umu.sePublications
Change search
Refine search result
3456789 251 - 300 of 897
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 251.
    Ganai, Rais Ahmad
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics. Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY 10016, USA.
    Johansson, Erik
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    DNA Replication - A Matter of Fidelity2016In: Molecular Cell, ISSN 1097-2765, E-ISSN 1097-4164, Vol. 62, no 5, p. 745-755Article, review/survey (Refereed)
    Abstract [en]

    The fidelity of DNA replication is determined by many factors, here simplified as the contribution of the DNA polymerase (nucleotide selectivity and proofreading), mismatch repair, a balanced supply of nucleotides, and the condition of the DNA template (both in terms of sequence context and the presence of DNA lesions). This review discusses the contribution and interplay between these factors to the overall fidelity of DNA replication.

  • 252.
    Ganai, Rais Ahmad
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Osterman, Pia
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Johansson, Erik
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Yeast DNA Polymerase epsilon Catalytic Core and Holoenzyme Have Comparable Catalytic Rates2015In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 290, no 6, p. 3825-3835Article in journal (Refereed)
    Abstract [en]

    The holoenzyme of yeast DNApolymerase ε (Pol ε) consists of four subunits– Pol2, Dpb2, Dpb3, and Dpb4. A proteasesensitivesite results in a N-terminalproteolytic fragment of Pol2, called Pol2core,that consists of the catalytic core of Pol ε andretains both polymerase and exonucleaseactivities. Pre-steady-state kinetics showedthat the exonuclease rates on single-stranded,double-stranded, and mismatched DNA werecomparable between Pol ε and Pol2core. Singleturnover pre-steady-state kinetics alsoshowed that the kpol of Pol ε and Pol2core werecomparable when pre-loading the polymeraseonto the primer-template before adding Mg2+and dTTP. However, a global fit of the dataover six sequential nucleotide incorporationsrevealed that the overall polymerization rateand processivity was higher for Pol ε than forPol2core. The largest difference was observedwhen challenged for the formation of aternary complex and incorporation of thefirst nucleotide. Pol ε needed less than asecond to incorporate a nucleotide, butseveral seconds passed before Pol2coreincorporated detectable levels of the firstnucleotide. We conclude that the accessorysubunits and the C-terminus of Pol2 do notinfluence the catalytic rate of Pol ε butfacilitate the loading and incorporation of thefirst nucleotide by Pol ε.

  • 253.
    Garcia-Lorenzo, Maribel
    Umeå University, Faculty of Science and Technology, Chemistry.
    The Role of Proteases in Plant Development2007Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution.

    Systematic comparative analysis of the available sequenced genomes of two model organisms led to the identification of an increasing number of protease genes, giving insights about protein sequences that are conserved in the different species, and thus are likely to have common functions in them and the acquisition of new genes, elucidate issues concerning non-functionalization, neofunctionalization and subfunctionalization.

    The involvement of proteases in senescence and PCD was investigated. While PCD in woody tissues shows the importance of vacuole proteases in the process, the senescence in leaves demonstrate to be a slower and more ordered mechanism starting in the chloroplast where the proteases there localized become important.

    The light-harvesting complex of Photosystem II is very susceptible to protease attack during leaf senescence. We were able to show that a metallo-protease belonging to the FtsH family is involved on the process in vitro. Arabidopsis knockout mutants confirmed the function of FtsH6 in vivo.

  • 254. Ge, Changrong
    et al.
    Georgiev, Alexander
    Öhman, Anders
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Pathogenesis (UCMP) (Faculty of Medicine).
    Wieslander, Åke
    Kelly, Amelie A.
    Tryptophan Residues Promote Membrane Association for a Plant Lipid Glycosyltransferase Involved in Phosphate Stress2011In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 286, no 8, p. 6669-6684Article in journal (Refereed)
    Abstract [en]

    Chloroplast membranes contain a substantial excess of the nonbilayer-prone monogalactosyldiacylglycerol (GalDAG) over the biosynthetically consecutive, bilayer-forming digalactosyldiacylglycerol (GalGalDAG), yielding a high membrane curvature stress. During phosphate shortage, plants replace phospholipids with GalGalDAG to rescue phosphate while maintaining membrane homeostasis. Here we investigate how the activity of the corresponding glycosyltransferase (GT) in Arabidopsis thaliana (atDGD2) depends on local bilayer properties by analyzing structural and activity features of recombinant protein. Fold recognition and sequence analyses revealed a two-domain GT-B monotopic structure, present in other plant and bacterial glycolipid GTs, such as the major chloroplast GalGalDAG GT atDGD1. Modeling led to the identification of catalytically important residues in the active site of atDGD2 by site-directed mutagenesis. The DGD synthases share unique bilayer interface segments containing conserved tryptophan residues that are crucial for activity and for membrane association. More detailed localization studies and liposome binding analyses indicate differentiated anchor and substrate-binding functions for these separated enzyme interface regions. Anionic phospholipids, but not curvature-increasing nonbilayer lipids, strongly stimulate enzyme activity. From our studies, we propose a model for bilayer "control" of enzyme activity, where two tryptophan segments act as interface anchor points to keep the substrate region close to the membrane surface. Binding of the acceptor substrate is achieved by interaction of positive charges in a surface cluster of lysines, arginines, and histidines with the surrounding anionic phospholipids. The diminishing phospholipid fraction during phosphate shortage stress will then set the new GalGalDAG/phospholipid balance by decreasing stimulation of atDGD2.

  • 255.
    Gerold, Gisa
    et al.
    Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany.
    Bruening, Janina
    Weigel, Bettina
    Pietschmann, Thomas
    Protein Interactions during the Flavivirus and Hepacivirus Life Cycle2017In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 16, no 4, p. 75-91Article in journal (Refereed)
    Abstract [en]

    interaction proteomics and why we believe these challenges should be met.

  • 256.
    Gharibyan, Anna
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Raveh, Dina
    Department of Life Sciences, Ben Gurion University of the Negev, Israel.
    Morozova-Roche, Ludmilla
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    S100A8/A9 amyloidosis in the ageing prostate: relating ex vivo and in vitro studies2012In: Amyloid Proteins: Methods and Protocols / [ed] Einar M. Sigurdsson, Miguel Calero, María Gasset, Springer Science+Business Media B.V., 2012, Vol. 849, p. 387-401Chapter in book (Refereed)
    Abstract [en]

    The family of S100 proteins encompasses more than 20 members characterized by remarkable conformational and functional diversity. S100 proteins act as central regulators of various cellular processes, including cell survival, proliferation, differentiation, and motility. Many S100 proteins are implicated in various types of cancer as well as neurodegenerative, inflammatory, and autoimmune diseases. Recently, we have found that S100A8⁄A9 proteins are involved in amyloidogenic process in the ageing prostate, contributing to the formation of calcified corpora amylacea (CA) inclusions, which commonly accompany age-dependent prostate tissue remodelling and cancer. Amyloid formation by S100A8/A9 proteins can also be modelled in vitro. Amyloid assembly of S100A8/A9 proteins into oligomeric and fibrillar complexes is modulated by metal ions such as calcium and zinc. Here, we provide insights into the extraction procedures and review the common structural features of ex vivo and in vitro S100A8/A9 amyloids, showing that they share the same generic origin.

  • 257.
    Gharizadeh, Baback
    et al.
    Stanford Genome Technology Center, Stanford University, Palo Alto, USA.
    Eriksson, Jonas
    Department of Biotechnology, Stockholm Center for Physics, Astronomy and Biotechnology, Royal Institute of Technology, Stockholm.
    Nourizad, Nader
    Department of Biotechnology, Stockholm Center for Physics, Astronomy and Biotechnology, Royal Institute of Technology, Stockholm.
    Nordström, Tommy
    Department of Biotechnology, Stockholm Center for Physics, Astronomy and Biotechnology, Royal Institute of Technology, Stockholm.
    Nyrén, Pål
    Department of Biotechnology, Stockholm Center for Physics, Astronomy and Biotechnology, Royal Institute of Technology, Stockholm.
    Improvements in Pyrosequencing technology by employing Sequenase polymerase2004In: Analytical Biochemistry, ISSN 0003-2697, E-ISSN 1096-0309, Vol. 330, no 2, p. 272-280Article in journal (Refereed)
    Abstract [en]

    Pyrosequencing is a DNA sequencing technique based on the bioluminometric detection of inorganic pyrophosphate, which is released when nucleotides are incorporated into a target DNA. Since the technique is based on an enzymatic cascade, the choice of enzymes is a critical factor for efficient performance of the sequencing reaction. In this study we have analyzed the performance of an alternative DNA polymerase, Sequenase, on the sequencing performance of the Pyrosequencing technology. Compared to the Klenow fragment of DNA polymerase I, Sequenase could read through homopolymeric regions with more than five T bases. In addition, Sequenase reduces remarkably interference from primer-dimers and loop structures that give rise to false sequence signals. By using Sequenase, synchronized extensions and longer reads can be obtained on challenging templates, thereby opening new avenues for applications of Pyrosequencing technology.

  • 258. Ghssein, Ghassan
    et al.
    Brutesco, Catherine
    Ouerdane, Laurent
    Fojcik, Clementine
    Izaute, Amelie
    Wang, Shuanglong
    Hajjar, Christine
    Lobinski, Ryszard
    Lemaire, David
    Richaud, Pierre
    Voulhoux, Rome
    Espaillat, Akbar
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Cava, Felipe
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Pignol, David
    Borezee-Durant, Elise
    Arnoux, Pascal
    Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus2016In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 352, no 6289, p. 1105-1109Article in journal (Refereed)
    Abstract [en]

    Metal acquisition is a vital microbial process in metal-scarce environments, such as inside a host. Using metabolomic exploration, targeted mutagenesis, and biochemical analysis, we discovered an operon in Staphylococcus aureus that encodes the different functions required for the biosynthesis and trafficking of a broad-spectrum metallophore related to plant nicotianamine (here called staphylopine). The biosynthesis of staphylopine reveals the association of three enzyme activities: a histidine racemase, an enzyme distantly related to nicotianamine synthase, and a staphylopine dehydrogenase belonging to the DUF2338 family. Staphylopine is involved in nickel, cobalt, zinc, copper, and iron acquisition, depending on the growth conditions. This biosynthetic pathway is conserved across other pathogens, thus underscoring the importance of this metal acquisition strategy in infection.

  • 259.
    Girma, Misgina Belachew
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Kifle, Demeke
    Univ Addis Ababa, Dept Biol, Addis Ababa, Ethiopia.
    Jebessa, Habte
    Univ Addis Ababa, Dept Biol, Addis Ababa, Ethiopia.
    Deep underwater seismic explosion experiments and their possible ecological impact: The case of Lake Arenguade-Central Ethiopian highlands2012In: Limnologica, ISSN 0075-9511, E-ISSN 1873-5851, Vol. 42, no 3, p. 212-219Article in journal (Refereed)
    Abstract [en]

    The study was conducted in Lake Arenguade (Lake Haro Hadho) from 2008 to 2009 and results were compared with previous studies conducted by different authors since the 1960s. The study included the chemistry and chlorophyll-a biomass in micrograms per liter (mu g L-1). Results showed that chlorophylla biomass dramatically decreased since the 1960s. Previous studies indicated that the phytoplankton community of Lake Arenguade was dominated by a single cyanobacterium species, Arthrospira fusiforrnis (Voronichin) Komarek et Lund (syn. Spirulina fusiformis Voronichin) while the present study showed co-dominance of the lake's phytoplankton by another cyanobacterium species, Anabaenopsis elenkinii Miller. The trend shows that A. fusiformis is on the verge of disappearance from Lake Arenguade. While other factors can be responsible for such a change, the contribution of underwater seismological detonation experiments carried out repeatedly cannot be ruled out. Based on the results, recommendations were forwarded for possible full-fledged environmental impact assessment of explosion experiments in Lake Arenguade; and other lakes in which similar explosion experiments were carried out. (C) 2012 Elsevier GmbH. All rights reserved.

  • 260. Gnanasundram, Sivakumar Vadivel
    et al.
    Fåhraeus, Robin
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Translation Stress Regulates Ribosome Synthesis and Cell Proliferation2018In: International Journal of Molecular Sciences, ISSN 1422-0067, E-ISSN 1422-0067, Vol. 19, no 12, article id 3757Article, review/survey (Refereed)
    Abstract [en]

    Ribosome and protein synthesis are major metabolic events that control cellular growth and proliferation. Impairment in ribosome biogenesis pathways and mRNA translation is associated with pathologies such as cancer and developmental disorders. Processes that control global protein synthesis are tightly regulated at different levels by numerous factors and linked with multiple cellular signaling pathways. Several of these merge on the growth promoting factor c-Myc, which induces ribosome biogenesis by stimulating Pol I, Pol II, and Pol III transcription. However, how cells sense and respond to mRNA translation stress is not well understood. It was more recently shown that mRNA translation stress activates c-Myc, through a specific induction of E2F1 synthesis via a PI3K delta-dependent pathway. This review focuses on how this novel feedback pathway stimulates cellular growth and proliferation pathways to synchronize protein synthesis with ribosome biogenesis. It also describes for the first time the oncogenic activity of the mRNA, and not the encoded protein.

  • 261.
    Goldsteins, Gundars
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Andersson, Karin
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Olofsson, Anders
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Dacklin, Ingrid
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Edvinsson, Åsa
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Baranov, Vladimir
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Sandgren, Ola
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Thylén, Christina
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Hammarström, Sten
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Lundgren, Erik
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Characterisation of two highly amyloidogenic mutants of transthyretin1997In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 36, no 18, p. 5346-5352Article in journal (Refereed)
    Abstract [en]

    The plasma protein transthyretin (TTR) has the potential to form amyloid under certain conditions. More than 50 different point mutations have been associated with amyloid formation that occurs only in adults. It is not known what structural changes are introduced into the structure of this otherwise stable molecule that results in its aggregation into insoluble amyloid fibrils. On the basis of calculations of the frequency of known mutations over the polypeptide, we have constructed two mutants in the D-strand of the polypeptide. These molecules, containing either a deletion or a substitution at amino acid positions 53−55, were unstable and spontaneously formed aggregates upon storage in TBS (pH 7.6). The precipitates were shown to be amyloid by staining with thioflavin T and Congo Red. Their ultrastructure was very similar to that of amyloid fibrils deposited in the vitreous body of patients with familial amyloidotic polyneuropathy type 1 with an amino acid replacement in position 30 (TTRmet30). Like amyloid isolated from the vitreous body of the eye, the amyloid precipitates generated from the TTR mutants exposed a trypsin cleavage site between amino acid residues 48 and 49, while plasma TTRmet30 isolated from amyloidosis patients as well as wild-type TTR only showed minor trypsin sensitivity. Our data indicate that the mutants we have constructed are similar to amyloid precursors or may share structural properties with intermediates on a pathway leading to amyloid deposits of plasma TTR.

  • 262.
    Goldsteins, Gundars
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Persson, Håkan
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Andersson, Karin
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Olofsson, Anders
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Dacklin, Ingrid
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Edvinsson, Åsa
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Saraiva, Maria João
    Lundgren, Erik
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Exposure of cryptic epitopes on transthyretin only in amyloid and in amyloidogenic mutants1999In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 96, no 6, p. 3108-3113Article in journal (Refereed)
    Abstract [en]

    The structural requirements for generation of amyloid from the plasma protein transthyretin (TTR) are not known, although it is assumed that TTR is partly misfolded in amyloid. In a search for structural determinants important for amyloid formation, we generated a TTR mutant with high potential to form amyloid. We demonstrated that the mutant represents an intermediate in a series of conformational changes leading to amyloid. Two monoclonal antibodies were generated against this mutant; each displayed affinity to ex vivo TTR and TTR mutants with amyloidogenic folding but not to wild-type TTR or mutants exhibiting the wild-type fold. Two cryptic epitopes were mapped to a domain of TTR, where most mutations associated with amyloidosis occur and which we propose is displaced at the initial phase of amyloid formation, opening up new surfaces necessary for autoaggregation of TTR monomers. The results provide direct biochemical evidence for structural changes in an amyloidogenic intermediate of TTR.

  • 263.
    Good, James A. D.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Andersson, Christopher
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Hansen, Sabine
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Wall, Jessica
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Krishnan, Syam
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Begum, Afshan
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Grundström, Christin
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Niemiec, Moritz Sebastian
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Vaitkevicius, Karolis
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sauer, Uwe H.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Sauer–Eriksson, A. Elisabeth
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Johansson, Jörgen
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Attenuating Listeria monocytogenes virulence by targeting the regulatory protein PrfA2016In: Cell chemical biology, ISSN 2451-9448, Vol. 23, no 3, p. 404-414Article in journal (Refereed)
    Abstract [en]

    The transcriptional activator PrfA, a member of the Crp/Fnr family, controls the expression of some key virulence factors necessary for infection by the human bacterial pathogen Listeria monocytogenes. Phenotypic screening identified ring-fused 2-pyridone molecules that at low micromolar concentrations attenuate L. monocytogenes infectivity by reducing the expression of virulence genes, without compromising bacterial growth. These inhibitors bind the transcriptional regulator PrfA and decrease its affinity for the consensus DNA binding site. Structural characterization of this interaction revealed that one of the ring-fused 2-pyridones, compound 1, binds within a hydrophobic pocket, located between the C- and N-terminal domains of PrfA, and interacts with residues important for PrfA activation. This indicates that these inhibitors maintain the DNA-binding helix-turn-helix motif of PrfA in a disordered state, thereby preventing a PrfA:DNA interaction. Ring-fused 2-pyridones represent a new class of chemical probes for studying virulence in L. monocytogenes.

  • 264.
    Good, James A. D.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Silver, Jim
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Nunez-Otero, Carlos
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Bahnan, Wael
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Krishnan, K. Syam
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Salin, Olli
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Engström, Patrik
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Svensson, Richard
    Department of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden; The Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Chemical Biology Consortium Sweden, Uppsala University, SE-751 23 Uppsala, Sweden.
    Artursson, Per
    Department of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden; The Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Chemical Biology Consortium Sweden, Uppsala University, SE-751 23 Uppsala, Sweden.
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Bergström, Sven
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Thiazolino 2-Pyridone Amide Inhibitors of Chlamydia trachomatis Infectivity2016In: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 59, no 5, p. 2094-2108Article in journal (Refereed)
    Abstract [en]

    The bacterial pathogen Chlamydia trachomatis is a global health burden currently treated with broad-spectrum antibiotics which disrupt commensal bacteria. We recently identified a compound through phenotypic screening that blocked infectivity of this intracellular pathogen without host cell toxicity (compound 1, KSK 120). Herein, we present the optimization of 1 to a class of thiazolino 2-pyridone amides that are highly efficacious (EC50 <= 100 nM) in attenuating infectivity across multiple serovars of C. trachomatis without host cell toxicity. The lead compound 21a exhibits reduced lipophilicity versus 1 and did not affect the growth or viability of representative commensal flora at 50 mu M. In microscopy studies, a highly active fluorescent analogue 37 localized inside the parasitiphorous inclusion, indicative of a specific targeting of bacterial components. In summary, we present a class of small molecules to enable the development of specific treatments for C. trachomatis.

  • 265.
    Gouveia-Figueira, Sandra
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Pharmacology.
    Bosson, Jenny A.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Unosson, Jon
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Behndig, Annelie F.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Nording, Malin
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Fowler, Christopher
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Pharmacology.
    Relative and absolute reliability of measures of linoleic acid-derived oxylipins in human plasma2015In: Prostaglandins & other lipid mediators, ISSN 1098-8823, E-ISSN 2212-196X, Vol. 121, no Part B, p. 227-233Article in journal (Refereed)
    Abstract [en]

    Modern analytical techniques allow for the measurement of oxylipins derived from linoleic acid in biological samples. Most validatory work has concerned extraction techniques, repeated analysis of aliquots from the same biological sample, and the influence of external factors such as diet and heparin treatment upon their levels, whereas less is known about the relative and absolute reliability of measurements undertaken on different days. A cohort of nineteen healthy males were used, where samples were taken at the same time of day on two occasions, at least 7 days apart. Relative reliability was assessed using Lin's concordance correlation coefficients (CCC) and intraclass correlation coefficients (ICC). Absolute reliability was assessed by Bland-Altman analyses. Nine linoleic acid oxylipins were investigated. ICC and CCC values ranged from acceptable (0.56 [13-HODE]) to poor (near zero [9(10)- and 12(13)-EpOME]). Bland-Altman limits of agreement were in general quite wide, ranging from ±0.5 (12,13-DiHOME) to ±2 (9(10)-EpOME; log10 scale). It is concluded that relative reliability of linoleic acid-derived oxylipins varies between lipids with compounds such as the HODEs showing better relative reliability than compounds such as the EpOMEs. These differences should be kept in mind when designing and interpreting experiments correlating plasma levels of these lipids with factors such as age, body mass index, rating scales etc.

  • 266.
    Gouveia-Figueira, Sandra
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Nording, Malin L.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Validation of a tandem mass spectrometry method using combined extraction of 37 oxylipins and 14 endocannabinoid-related compounds including prostamides from biological matrices2015In: Prostaglandins & other lipid mediators, ISSN 1098-8823, E-ISSN 2212-196X, Vol. 121, no Part A, p. 110-121Article in journal (Refereed)
    Abstract [en]

    There is a clinical need for more relevant coverage of bioactive lipids using smaller sample volumes. Therefore, we have validated a tandem mass spectrometry method for combined solid phase extraction of 37 compounds in the oxylipin (OxL) and 14 in the endocannabinoid (eCB) metabolome, as well as prostamides. The limits of quantification (LOQ) for compounds in the eCB metabolome were in the range 0.5-1000fg on column, intraday accuracy and precision ranges (%) were 83-125 and 0.3-17, respectively, and interday accuracy and precision ranges (%) were 80-119 and 1.2-20, respectively, dependent upon the compound and the concentration studied. Corresponding values for OxL were 0.5fg-4.2pg on column (LOQ), 85-115% (inter- and intraday accuracy) and <5% (precision). The combined extraction method was successfully applied to tissues, cell extracts, human plasma and milk samples. A deeper study of levels in elk, pig and cow brain, as well as cow heart and liver revealed tissue and species-specific elevation of eicosanoids: arachidonate diols, 20-HETE and 12(S)-HEPE (cow liver), LTB4 (cow brain), and monohydroxy metabolites (HETEs), epoxides and 5-oxo-ETE in elk brain, which might be caused by factors of stress and/or post-mortem reactions in the tissues.

  • 267.
    Grabbe, Caroline
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Pathogenesis (UCMP) (Faculty of Medicine).
    Protein tyrosine kinases and the regulation of signalling and adhesion in drosophila melanogaster2007Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In order to build a multi-cellular organism and to regulate cellular functions, cells need to communicate with each other, as well as tightly regulate their behaviour in response to environmental changes. For these purposes all eukaryotic cells express a large number of membrane spanning receptors that either themselves contain catalytic activity or via cytoplasmic effector enzymes, function to transmit “signals” from the cell exterior to induce appropriate responses within the cell. Protein tyrosine kinases (PTKs) are important signalling molecules, represented by the transmembrane receptor tyrosine kinases (RTKs) in addition to the cytoplasmic non-receptor PTKs, which alter cell behaviour by phosphorylating target proteins. An additional requirement for proper signalling and multicellular organisation is the adhesion between cells as well as adhesion of cells to the extracellular matrix (ECM).

    Adhesion between cells and the ECM is mainly mediated by the integrin family of cell surface receptors, which functions as a structural link between the ECM and the actin cytoskeleton as well as important centres for signalling. Mammalian studies have implicated the cytoplasmic Focal Adhesion Kinase (FAK), as a major transmitter of signalling emanating from integrins, regulating cell migration, survival, proliferation and differentiation. In our studies of the sole FAK family member in Drosophila, Fak56, we have concluded that the deletion of Fak56 from the fruit fly genome causes no obvious defects in integrin-mediated adhesion, migration or signalling in vivo. Consequently, in contrast to the embryonic lethality observed in mouse knockouts, Fak56 mutant flies are both viable and fertile. However, we do find a clear genetic interaction between Fak56 and Drosophila integrins. Additionally, overexpression studies indeed indicate Fak56 as a negative regulator of integrin adhesion, given that excess Fak56 protein phenocopies loss of integrin function, causing phenotypes such as muscle detachment and wing blistering.

    In Drosophila, as well as in mammals, FAK family proteins are highly abundant in the CNS and in our studies we have identified a requirement of Fak56 in synaptic transmission at neuromuscular junctions. Lack of Fak56 causes a weakening of action potential conduction, resulting in sensitivity to high-frequency mechanical and electrical stimulation, manifested by epileptic-like seizures and paralysis in Fak56 mutants, a phenotype known as Bang Sensitivity (BS) in flies. We also show that Fak56 phosphorylation is directly modulated in response to alterations in intracellular calcium levels, supporting a role for Fak56 in neurotransmission.

    Fak56 is directly activated by the Drosophila Anaplastic Lymphoma Kinase, DAlk, receptor which was identified in our lab. We characterised DAlk as a novel RTK that is expressed in the embryonic CNS and mesoderm where it drives activation of the ERK/MAPK pathway. Indeed, we found DAlk to ectopically induce protein tyrosine phosphorylation and specifically phosphorylation of ERK, resulting in autonomous cell transformation and uncontrolled tissue growth. Subsequently, we identified a requirement for DAlk function during Drosophila embryogenesis, where it displays an essential role in gut development. Specifically, we identified the secreted molecule Jelly belly (Jeb) as a ligand for DAlk and showed that Jeb-DAlk interaction activates an ERK-mediated signalling pathway essential for visceral muscle specification and fusion, and consequently formation of the gut.

    The potent ability of PTKs to regulate cell behaviour, together with the strong linkage between RTK dysregulation and tumour formation, renders the negative regulation of kinase activity an important area of research. We have identified the Drosophila homologue of Cbl-interacting protein of 85kDa, dCIN85, an adaptor molecule which in mammalian cells has shown involvement in RTK endocytosis and downregulation, as well as in the regulation of actin cytoskeleton dynamics. In the fruit fly, dCIN85 displays essential functions, given that dCIN85 loss of function mutants display a grand-child less phenotype. Generation of a dCIN85 antibody, together with isoform-specific transgenic flies, have allowed us to observe a punctuate localization pattern of the SH3-domain containing dCIN85 variants, representing Rab5-positive endosomal structures. This, in addition to the confirmation of a direct dCIN85-dCbl interaction, indicates an evolutionary conservation of dCIN85 function. Interestingly, dCIN85 co-localises with dRICH1, a Cdc42 specific RhoGAP, in differentiated photoreceptor cells in eye imaginal discs. This may imply a role for dCIN85 in the regulation of the specialised endocytic recycling processes required for the assembly/maintenance of tight junctions and establishment of cell polarity in epithelial tissues.

  • 268.
    Granlund, Irene
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Proteomic analysis of Arabidopsis thaliana2008Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    A complete proteome analysis of the chloroplast stroma, using 2D-PAGE, from spinach and Arabidopsis was performed. To improve the identification of proteins a computer program named SPECLUST was used. In SPECLUST, peak masses that are similar in many spots cluster together because they originate from the same protein with different locations on the gel. Within this program peaks in a cluster can be investigated in detail by peaks-in-common, and the unidentified masses that differ between spots in a cluster could be caused by protein modifications, which was analysed further by MS/MS.

    The thylakoid is an internal membrane system in the chloroplast where protein complexes involved in photosynthesis are housed. Enclosed in the thylakoid membrane is the chloroplast lumen, with a proteome estimated to contain 80-200 different proteins. Because the chloroplast lumen is close to the photosynthesis machinery in the plant, one can expect that the lumen proteome will change depending on if the plant is dark or light adapted. DIGE analysis of lumen proteins found that 15 lumen proteins show increased relative abundance in light-adapted plants. In addition co-expression analysis of lumen protein genes suggests that the lumen protein genes are uniformly transcriptionally regulated, not only by light but in a general manner.

    Plastocyanin is one of the proteins involved in the electron transfer in photosynthesis. Two homologous plastocyanin isoforms are encoded by the genes PETE1 and PETE2 in the nuclear genome of Arabidopsis, where PETE2 is the more abundant isoform. Knockout mutants of each of the plastocyanin isoforms shows that a 90% reduction of plastocyanin levels affects rates of photosynthesis and growth only slightly. A corresponding over-expression of plastocyanin in each of the two knockout mutants results in essentially wild-type photosynthetic performance. Reduced plastocyanin levels make the plant sensitive to Cu stress and therefore plastocyanin plays a major role as a Cu sink.

    A by-product of photosynthesis is hydrogen peroxide, which may be harmful for the plant. The discovery that an abundant protein found in the chloroplast lumen, TL29, shared sequence homology to Ascorbate Peroxidase (APX) was therefore of interest. We have evidence that TL29 is not an APX protein; it lacks the heme-binding active site and shows no activity. TL29 is located in the grana region and is electrostaticaly attached to the thylakoid membrane. It has four isoforms, with different pIs, both in the native and denatured form. It has no interaction with ascorbate, when compared to raAPX1. TL29 has two cysteine residues and one of them seems to have redox-regulated function, proposing that it may interact with other proteins close to PSII.

  • 269.
    Gratz, Regina
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Expression Studies of AminoAcid Transporters belonging to the Lysine and Hisitidine Transporter (LHT) Family in Hybrid Aspen Populus tremula L. x tremuloides Michx.2013Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The human based input of fixed nitrogen, e.g. due to nitrogenous fertilizers, is the second most important driver of global change. The active input was, however, necessary due to a fast growing demand for agricultural products in order to feed an expanding world population in the last decades. Severe environmental damages are visible now, which is why it is crucial to find alternative ways to increase plant growth and biomass production without applying massive amounts of fertilizers. One way is to identify genes, which are able to improve nitrogen use efficiency (NUE) in plants when manipulated. Especially genes involved in nitrogen uptake, assimilation and remobilization, such as amino acid transporters are of great interest. Therefore a detailed knowledge about molecular processes regarding nitrogen transport in the respective plant species is crucial. So far, there is not much known about amino acid uptake mechanisms in tree species, which is why this work focuses on hybrid aspen. It was aimed to investigate the tissue expression patterns of genes encoding putative amino acid transporters in order to find potential target genes for improving NUE in the long term.

    It was shown that eight homologs of a main Arabidopsis amino acid transporter, AtLHT1, are expressed in poplar. The eight amino acid transporters displayed different expression patterns, with expression in roots, stem and leaves of young hybrid aspen. To analyze the impacts of an increased amino acid uptake phenotype in a tree model system, PtLHT1.2 was cloned into an expression vector for Agrobacterium-mediated transformation into hybrid aspen. These results will be of great value for further studies regarding NUE in tree models.

  • 270. Griese, Julia J
    et al.
    Kositzki, Ramona
    Schrapers, Peer
    Branca, Rui M M
    Nordström, Anders
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Lehtiö, Janne
    Haumann, Michael
    Högbom, Martin
    Structural Basis for Oxygen Activation at a Heterodinuclear Manganese/Iron Cofactor2015In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 290, no 42, p. 25254-25272Article in journal (Refereed)
    Abstract [en]

    Two recently discovered groups of prokaryotic di-metal carboxylate proteins harbor a heterodinuclear Mn/Fe cofactor. These are the class Ic ribonucleotide reductase R2 proteins and a group of oxidases that are found predominantly in pathogens and extremophiles, called R2-like ligand-binding oxidases (R2lox). We have recently shown that the Mn/Fe cofactor of R2lox self-assembles from Mn-II and Fe-II in vitro and catalyzes formation of a tyrosine-valine ether cross-link in the protein scaffold (Griese, J. J., Roos, K., Cox, N., Shafaat, H. S., Branca, R.M., Lehtio , J., Graslund, A., Lubitz, W., Siegbahn, P. E., and Hogbom, M. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 1718917194). Here, we present a detailed structural analysis of R2lox in the nonactivated, reduced, and oxidized resting Mn/Fe- and Fe/Fe-bound states, as well as the nonactivated Mn/Mn-bound state. X-ray crystallography and x-ray absorption spectroscopy demonstrate that the active site ligand configuration of R2lox is essentially the same regardless of cofactor composition. Both the Mn/Fe and the diiron cofactor activate oxygen and catalyze formation of the ether cross-link, whereas the dimanganese cluster does not. The structures delineate likely routes for gated oxygen and substrate access to the active site that are controlled by the redox state of the cofactor. These results suggest that oxygen activation proceeds via similar mechanisms at the Mn/Fe and Fe/Fe center and that R2lox proteins might utilize either cofactor in vivo based on metal availability.

  • 271. Grinberg, Inna
    et al.
    McGann, Matthew
    Lundin, Daniel
    Crona, Mikael
    Hasan, Mahmudal
    Jonna, Venkateswara Rao
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Loderer, Christoph
    Sahlin, Margareta
    Markova, Natalia
    Stenson, John
    Borovok, Ilya
    Hofer, Anders
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Logan, Derek
    Sjöberg, Britt-Marie
    Novel ATP-Cone-Driven Allosteric Regulation of Ribonucleotide Reductase Via the Radical-Generating Subunit2018In: Protein Science, ISSN 0961-8368, E-ISSN 1469-896X, Vol. 27, p. 87-88Article in journal (Other academic)
  • 272. Grosjean, Henri
    et al.
    de Crécy-Lagard, Valérie
    Björk, Glenn R
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Aminoacylation of the anticodon stem by a tRNA-synthetase paralog: relic of an ancient code?2004In: TIBS -Trends in Biochemical Sciences. Regular ed., ISSN 0968-0004, E-ISSN 1362-4326, Vol. 29, no 10, p. 519-522Article in journal (Refereed)
    Abstract [en]

    The activation and charging of amino acids onto the acceptor stems of their cognate tRNAs are the housekeeping functions of aminoacyl-tRNA synthetases. The availability of whole genome sequences has revealed the existence of synthetase-like proteins that have other functions linked to different aspects of cell metabolism and physiology. In eubacteria, a paralog of glutamyl tRNA synthetase, which lacks the tRNA-binding domain, was found to aminoacylate tRNA(Asp) not on the 3'-hydroxyl group of the acceptor stem but on a cyclopentene diol of the modified nucleoside queuosine present at the wobble position of anticodon loop. This modified nucleoside might be a relic of an ancient code.

  • 273.
    Gudey, Shyam Kumar
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Sundar, Reshma
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Mu, Yabing
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Wallenius, Anders
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Zang, Guangxiang
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Bergh, Anders
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Heldin, Carl-Henrik
    Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University.
    Landström, Marene
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology. Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University.
    TRAF6 stimulates the tumor-promoting effects of TGF beta type I receptor through polyubiquitination and activation of Presenilin 12014In: Science Signaling, ISSN 1945-0877, E-ISSN 1937-9145, Vol. 7, no 307, article id ra2Article in journal (Refereed)
    Abstract [en]

    Transforming growth factor-beta (TGF beta) can be both a tumor promoter and suppressor, although the mechanisms behind the protumorigenic switch remain to be fully elucidated. The TGF beta type I receptor (T beta RI) is proteolytically cleaved in the ectodomain region. Cleavage requires the combined activities of tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and TNF-alpha-converting enzyme (TACE). The cleavage event occurs selectively in cancer cells and generates an intracellular domain (ICD) of T beta RI, which enters the nucleus to mediate gene transcription. Presenilin 1 (PS1), a gamma-secretase catalytic core component, mediates intramembrane proteolysis of transmembrane receptors, such as Notch. We showed that TGF beta increased both the abundance and activity of PS1. TRAF6 recruited PS1 to the T beta RI complex and promoted lysine-63-linked polyubiquitination of PS1, which activated PS1. Furthermore, PS1 cleaved T beta RI in the transmembrane domain between valine-129 and isoleucine-130, and ICD generation was inhibited when these residues were mutated to alanine. We also showed that, after entering the nucleus, T beta RI-ICD bound to the promoter and increased the transcription of the gene encoding T beta RI. The TRAF6- and PS1-induced intramembrane proteolysis of T beta RI promoted TGF beta-induced invasion of various cancer cells in vitro. Furthermore, when a mouse xenograft model of prostate cancer was treated with the gamma-secretase inhibitor DBZ {(2S)-2-[2-(3,5-difluorophenyl)-acetylamino]-N-(5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b, d]azepin-7-yl)-propionamide}, generation of T beta RI-ICD was prevented, transcription of the gene encoding the proinvasive transcription factor Snail1 was reduced, and tumor growth was inhibited. These results suggest that gamma-secretase inhibitors may be useful for treating aggressive prostate cancer.

  • 274.
    Gunnarsson, David
    Umeå University, Faculty of Science and Technology, Molecular Biology (Faculty of Science and Technology).
    Reproductive toxicology of endocrine disruptors: effects of cadmium, phthalates and phytoestrogens on testicular steroidogenesis2008Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    A number of investigations during the last two decades describe adverse trends in male reproductive health, which have been proposed to be caused by environmental factors with endocrine disrupting properties. In contrast to many other toxicants, endocrine disruptors often do not show linear dose-response relationships typical of those found in traditional toxicological studies. For many compounds, low-dose exposure causes effects opposite to the ones seen after high-dose exposure. In addition, the timing of exposure has been found to be critical. Hence, to correctly assess the impact of endocrine disruptors on reproductive health requires in-depth knowledge of their mechanisms of action.

    This thesis aimed at identifying the mechanisms underlying the effects of cadmium (Cd), phthalates and phytoestrogens on testicular steroidogenesis. For this purpose, in vitro as well as in vivo models were used. Cd was found to inhibit testosterone synthesis in vivo by down-regulating LH receptor gene expression and reducing the testicular levels of cAMP and StAR protein. In addition, Cd caused a pronounced increase in testicular prostaglandin F (PGF), suggesting that Cd exerts its suppressive effect on steroidogenesis also by inducing the inhibitory PKC pathway. Pre-treatment with zinc (Zn) protected completely against Cd-induced effects on testosterone and PGF. Furthermore, we observed that Cd exposure increased glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA expression in the testis. GAPDH is a potent coactivator of androgen receptor-mediated transcription and the up-regulation found in our study is probably a compensatory response to reduced testosterone concentrations. This finding is interesting since GAPDH has been proposed to have an important role in the regulation of apoptosis as well as sperm motility. We discovered that mono-(2-ethylhexyl) phthalate (MEHP), the active metabolite of the frequently used phthalate di-(2-ethylhexyl) phthalate (DEHP), stimulates Leydig cell steroidogenesis in vitro, by a cAMP- and StAR-independent mechanism. MEHP exposure caused a similar effect in granulosa cells. Gene expression analysis revealed that MEHP is likely to stimulate steroidogenesis by increasing the amount of cholesterol available for steroid synthesis. In the last investigation, we examined the effects of low-dose phytoestrogen exposure on testosterone synthesis during puberty in male goats. Isoflavones present in clover increased plasma concentrations of testosterone and free as well as total triiodothyronine (T3). T3 has previously been shown to induce testosterone synthesis and it is possible that an elevated T3 secretion underlies the increased plasma testosterone levels.

    Reduced fertility and reproductive tract malformations affect both the individual and the society. Hence, a sound knowledge of reproductive toxicants is of crucial importance. The findings presented in this thesis provide new insights into the reproductive toxicology of endocrine disruptors and may be valuable for risk assessment purposes.

  • 275.
    Gupta, Arun A.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Reinartz, Ines
    Karunanithy, Gogulan
    Spilotros, Alessandro
    Jonna, Venkateswara Rao
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Hofer, Anders
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Svergun, Dmitri I.
    Baldwin, Andrew J.
    Schug, Alexander
    Wolf-Watz, Magnus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Formation of a Secretion-Competent Protein Complex by a Dynamic Wrap-around Binding Mechanism2018In: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 430, no 18, Part B, p. 3157-3169Article in journal (Refereed)
    Abstract [en]

    Bacterial virulence is typically initiated by translocation of effector or toxic proteins across host cell membranes. A class of gram-negative pathogenic bacteria including Yersinia pseudotuberculosis and Yersinia pestis accomplishes this objective with a protein assembly called the type III secretion system. Yersinia effector proteins (Yop) are presented to the translocation apparatus through formation of specific complexes with their cognate chaperones (Syc). In the complexes where the structure is available, the Yops are extended and wrap around their cognate chaperone. This structural architecture enables secretion of the Yop from the bacterium in early stages of translocation. It has been shown previously that the chaperone-binding domain of YopE is disordered in its isolation but becomes substantially more ordered in its wrap-around complex with its chaperone SycE. Here, by means of NMR spectroscopy, small-angle X-ray scattering and molecular modeling, we demonstrate that while the free chaperone-binding domain of YopH (YopHCBD) adopts a fully ordered and globular fold, it populates an elongated, wrap-around conformation when it engages in a specific complex with its chaperone SycH2. Hence, in contrast to YopE that is unstructured in its free state, YopH transits from a globular free state to an elongated chaperone-bound state. We demonstrate that a sparsely populated YopHCBD state has an elevated affinity for SycH2 and represents an intermediate in the formation of the protein complex. Our results suggest that Yersinia has evolved a binding mechanism where SycH2 passively stimulates an elongated YopH conformation that is presented to the type III secretion system in a secretion-competent conformation.

  • 276. Gurvich, Olga L
    et al.
    Näsvall, S Joakim
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Baranov, Pavel V
    Björk, Glenn R
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Atkins, John F
    Two groups of phenylalanine biosynthetic operon leader peptides genes: a high level of apparently incidental frameshifting in decoding Escherichia coli pheL2011In: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 39, no 8, p. 3079-3092Article in journal (Refereed)
    Abstract [en]

    The bacterial pheL gene encodes the leader peptide for the phenylalanine biosynthetic operon. Translation of pheL mRNA controls transcription attenuation and, consequently, expression of the downstream pheA gene. Fifty-three unique pheL genes have been identified in sequenced genomes of the gamma subdivision. There are two groups of pheL genes, both of which are short and contain a run(s) of phenylalanine codons at an internal position. One group is somewhat diverse and features different termination and 5’-flanking codons. The other group, mostly restricted to Enterobacteria and including Escherichia coli pheL, has a conserved nucleotide sequence that ends with UUC_CCC_UGA. When these three codons in E. coli pheL mRNA are in the ribosomal E-, P- and A-sites, there is an unusually high level, 15%, of +1 ribosomal frameshifting due to features of the nascent peptide sequence that include the penultimate phenylalanine. This level increases to 60% with a natural, heterologous, nascent peptide stimulator. Nevertheless, studies with different tRNA(Pro) mutants in Salmonella enterica suggest that frameshifting at the end of pheL does not influence expression of the downstream pheA. This finding of incidental, rather than utilized, frameshifting is cautionary for other studies of programmed frameshifting.

  • 277.
    Gussing, Fredrik
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Zonal organization of the mouse olfactory systems2004Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Animals survey their environment for relevant odorous chemical compounds by means of the olfactory system. This system is in most vertebrates divided into a main and accessory olfactory system with two specialized neuroepithelia, the olfactory and the vomeronasal epithelium, respectively. The sensory neurons reside in these epithelia and together the neurons have an extraordinary sensitivity and are capable of detecting a vast number of different chemical molecules. After processing the chemical information, behavior may be altered. The information about a chemicals structure is deconstructed into a format that the brain may process. This is facilitated by organizing sensory neurons into a map and that the individual neuron responds only to one chemical feature. The sensory maps appear to have zones with different neuronal subpopulations. This thesis is addressing the fact that establishment, maintenance and function of these zones are unknown.

    We identify a gene (NQO1) to be selectively expressed in defined zone of the olfactory and the vomeronasal epithelia, respectively. NQO1-positive and negative axons segregate within the olfactory nerve and maintain a zonal organization when reaching olfactory bulb target neurons. These results indicate that one zone of both the accessory and the main olfactory projection maps is composed of sensory neurons specialized in reducing environmental and/or endogenously produced quinones via an NQO1-dependent mechanism.

    In addition, we have identified genes expressed in a graded manner that correlates with the dorsomedial-ventrolateral zonal organization of the olfactory epithelia. Considering the known functions of identified genes in establishment of cell specificity and precise axonal targeting, we suggest that zonal division of the primary olfactory systems is maintained, during continuous neurogenesis, as a consequence of topographic counter gradients of positional information.

    The vomeronasal sensory neurons (VSN) are organized into an apical and a basal zone. The zones differ in expression of e.g. chemosensory receptor families and Gα protein subunits (Gαi2 and Gαo). We have analyzed transgenic mice (OMP-dnRAR) in which the VSNs are unresponsive to the function of one of the genes identified herein (RALDH2). The phenotype observed suggests that endogenous produced retinoic acid is selectively required for postnatal survival of neurons in the Gαo-positive zone. Analyses of another mouse line target deleted in the Gαi2 gene (Gαi2 mutant) reveal a cellular phenotype that is opposite to that of OMP-dnRAR mice. Consequently in these mice, the apical Gαi2-positive zone is reduced whereas VSNs in the basal zone are not affected.

    Several social and reproductive behaviors are under the influence of the vomeronasal organ. We have analyzed some behavioral consequences of having deficient neurons that corresponds to either of the two zones. We propose that cues important for aggressive behavior are detected by apical vomeronasal zone, while cues detected by both apical and basal VSNs influence gender preference behavior.

  • 278.
    Gustafson, Inga
    Umeå University, Faculty of Science and Technology, Chemistry.
    Phospholipid membranes in biosensor applications: Stability, activity and kinetics of reconstituted proteins and glycolipids in supported membranes2004Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this study the formation of supported membranes onto planar solid supports has been investigated. The stability and activity of reconstituted membrane receptors has been studied. The potential use of such preparations in biosensor applications is discussed.

    The lipid films were made by the Langmuir Blodgett and by the liposome fusion techniques. These supported films were characterised by ellipsometry, atomic force microscopy, surface plasmon resonance (SPR) and resonant mirror techniques. The thickness of the films was in agreement with that of a cell membrane. The kinetics of formation of the lipid films was studied and discussed.

    The proteins, bacteriorhodopsin, cytochrome oxidase, acetylcholinesterase and the nicotinic acetylcholine receptor were reconstituted into the supported membrane. The subsequent analysis showed that the proteins were individually distributed and that the activity was retained, in some cases for several weeks after immobilisation.

    The glycolipids, GM1, GM2, GD1b, asialo-GM1, globotriaosylceramide, lactosylceramide and galactosylceramide, were also reconstituted into the supported membranes. Their specific interaction with the toxin ricin or with its B-chain was examined using SPR. The affinity of intact toxin and of its B-chain differed markedly and was pH dependent. The carbohydrate chain length and charge density of the glycolipids also influenced the affinity.

  • 279. Gustafsson, Robert
    et al.
    Berntsson, Ronnie P.-A.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Martínez-Carranza, Markel
    El Tekle, Geniver
    Odegrip, Richard
    Johnson, Eric A.
    Stenmark, Pål
    Crystal structures of OrfX2 and P47 from a Botulinum neurotoxin OrfX-type gene cluster2017In: FEBS Letters, ISSN 0014-5793, E-ISSN 1873-3468, Vol. 591, no 22, p. 3781-3792Article in journal (Refereed)
    Abstract [en]

    Botulinum neurotoxins are highly toxic substances and are all encoded together with one of two alternative gene clusters, the HA or the OrfX gene cluster. Very little is known about the function and structure of the proteins encoded in the OrfX gene cluster, which in addition to the toxin contains five proteins (OrfX1, OrfX2, OrfX3, P47, and NTNH). We here present the structures of OrfX2 and P47, solved to 2.1 and 1.8 angstrom, respectively. We show that they belong to the TULIP protein superfamily, which are often involved in lipid binding. OrfX1 and OrfX2 were both found to bind phosphatidylinositol lipids.

  • 280.
    Gustavsson, Anna
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Effects of invasin and YopH of Yersinia pseudotuberculosis on host cell signaling2004Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Integrins are a large family of membrane-spanning heterodimeric (αβ) receptors that bind to ligands on other cells or to extracellular matrix (ECM) proteins. These receptors mediate bidirectional signaling over the cell membrane to induce signaling cascades mediating functions as cell adhesion, spreading and migration. This signaling takes place at cell-matrix adhesions, which are sites where clustered and ligand-bound integrins connect to and mediate stabilization of the actin cytoskeleton, and induce signaling cascades. Integrins have a short cytoplasmic tail that is crucial for the bidirectional signaling, and the β1-integrin subunit exists in five splice variants only differing in the membrane-distal part of the cytoplasmic tail. This region of the almost ubiquitously expressed β1-integrin, β1A, contains two protein tyrosine motifs (NPXYs) interspaced with a threonine-rich region, while this region of the β1B splice variant is completely different and lacks known motifs. In contrast to the β1A-integrin, the β1B variant cannot mediate cell-matrix adhesion formation following binding to ECM ligands.

    The enteropathogenic bacterium Yersinia pseudotuberculosis binds to β1-integrins on the host cell with invasin, and this stimulates uptake of the bacterium. However, upon binding to the host cell, pathogenic Yersinia strains inject virulence effectors that block uptake. One effector responsible for the blocking is a tyrosine phosphatase, YopH. We identified the targets for this effector in the macrophage-like cell line J774A.1, which represent a professional phagocyte and thus is the likely target cell for the antiphagocytic effect of Yersinia. Two YopH target proteins were p130Cas and ADAP, of which the latter interestingly is an adapter protein specifically expressed in hematopoietic cells. ADAP has previously been implicated to participate in Fc-receptor-mediated phagocytosis and in communication between T-cell receptors and integrins.

    We also studied the importance of the cytoplasmic tail of β1-integrin for uptake of Yersinia. The GD25 cell line, which is a fibroblast-like cell line that lacks endogenous β1-integrins, was used together with GD25 cells transfected with β1B, β1Α or cytoplasmic tail mutants of β1A. These studies revealed that β1B-integrins could bind to invasin but not mediate uptake of Yersinia, while β1A both bound to invasin and mediated uptake. The first NPXY motif (unphosphorylated) and the double-threonines of the unique part of β1A were important for the ability of integrin to mediate uptake of Yersinia. These studies lead to the interesting finding that, when these cells were allowed to spread on invasin, those that expressed β1A spread as normal fibroblasts while for β1B-integrin-expressing cells, only finger-like protrusions of filopodia were formed. This provided us with a tool to study formation of filopodia without interference of the tightly linked process of lamellipodia formation. Initially, proteins that localized to the tip complex of these filopodia were identified. These were talin, VASP and interestingly the p130Cas-Crk-DOCK180 scaffold, while FAK, paxillin and vinculin were absent. In addition, VASP, p130Cas and Crk were shown to be important for the filopodia formation in GD25β1B. Further, the role of the actin motor myosin X, which previously has been implicated in formation of filopodia, was studied in the GD25Β1B cells and it was shown that myosin X not was important for filopodia formation, but that it recruited FAK and vinculin to the tip complexes of filopodia.

  • 281. Gutierrez, Laurent
    et al.
    Mongelard, Gaelle
    Flokova, Kristyna
    Pacurar, Daniel I.
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Novak, Ondrej
    Staswick, Paul
    Kowalczyk, Mariusz
    Pacurar, Monica
    Demailly, Herve
    Geiss, Gaia
    Bellini, Catherine
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis2012In: The Plant Cell, ISSN 1040-4651, E-ISSN 1532-298X, Vol. 24, no 6, p. 2515-2527Article in journal (Refereed)
    Abstract [en]

    Vegetative shoot-based propagation of plants, including mass propagation of elite genotypes, is dependent on the development of shoot-borne roots, which are also called adventitious roots. Multiple endogenous and environmental factors control the complex process of adventitious rooting. In the past few years, we have shown that the auxin response factors ARF6 and ARF8, targets of the microRNA miR167, are positive regulators of adventitious rooting, whereas ARF17, a target of miR160, is a negative regulator. We showed that these genes have overlapping expression profiles during adventitious rooting and that they regulate each other's expression at the transcriptional and posttranscriptional levels by modulating the homeostasis of miR160 and miR167. We demonstrate here that this complex network of transcription factors regulates the expression of three auxin-inducible Gretchen Hagen3 (GH3) genes, GH3.3, GH3.5, and GH3.6, encoding acyl-acid-amido synthetases. We show that these three GH3 genes are required for fine-tuning adventitious root initiation in the Arabidopsis thaliana hypocotyl, and we demonstrate that they act by modulating jasmonic acid homeostasis. We propose a model in which adventitious rooting is an adaptive developmental response involving crosstalk between the auxin and jasmonate regulatory pathways.

  • 282. Gómez-Consarnau, Laura
    et al.
    Akram, Neelam
    Lindell, Kristoffer
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Pedersen, Anders
    Neutze, Richard
    Milton, Debra L
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    González, José M
    Pinhassi, Jarone
    Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation2010In: PLoS biology, ISSN 1544-9173, E-ISSN 1545-7885, Vol. 8, article id e1000358Article in journal (Refereed)
    Abstract [en]

    Proteorhodopsins are globally abundant photoproteins found in bacteria in the photic zone of the ocean. Although their function as proton pumps with energy-yielding potential has been demonstrated, the ecological role of proteorhodopsins remains largely unexplored. Here, we report the presence and function of proteorhodopsin in a member of the widespread genus Vibrio, uncovered through whole-genome analysis. Phylogenetic analysis suggests that the Vibrio strain AND4 obtained proteorhodopsin through lateral gene transfer, which could have modified the ecology of this marine bacterium. We demonstrate an increased long-term survival of AND4 when starved in seawater exposed to light rather than held in darkness. Furthermore, mutational analysis provides the first direct evidence, to our knowledge, linking the proteorhodopsin gene and its biological function in marine bacteria. Thus, proteorhodopsin phototrophy confers a fitness advantage to marine bacteria, representing a novel mechanism for bacterioplankton to endure frequent periods of resource deprivation at the ocean’s surface.

  • 283.
    Götheson, Anna
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    The search for a specific control site in an entangled protein mess: - A study of inhibition and templation of α-synuclein amyloid aggregation using small compounds and bacterial proteins2014Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
  • 284.
    Haapala, Jussi
    et al.
    Department of Surgery, Kuopio University Hospital, Kuopio, Finland; Department of Rehabilitation Clinic, Kuopio University Hospital, Kuopio, Finland.
    Arokoski, Jari
    Department of Rehabilitation Clinic, Kuopio University Hospital, Kuopio, Finland.
    Hyttinen, Mika
    Department of Anatomy, University of Kuopio, Kuopio, Finland.
    Lammi, Mikko
    Department of Anatomy, University of Kuopio, Kuopio, Finland.
    Tammi, Markku
    Department of Anatomy, University of Kuopio, Kuopio, Finland.
    Kovanen, Vuokko
    Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
    Helminen, Heikki
    Department of Anatomy, University of Kuopio, Kuopio, Finland.
    Kiviranta, Ilkka
    Department of Surgery, Jyväskylä Central Hospital, Jyväskylä, Finland.
    Remobilization does not fully restore immobilization induced articular cartilage atrophy.1999In: Clinical Orthopaedics and Related Research, ISSN 0009-921X, E-ISSN 1528-1132, no 362, p. 218-229, article id 10335301Article in journal (Refereed)
    Abstract [en]

    The recovery of articular cartilage from immobilization induced atrophy was studied. The right hind limbs of 29-week-old beagle dogs were immobilized for 11 weeks and then remobilized for 50 weeks. Cartilage from the immobilized knee was compared with tissue from age matched control animals. After the immobilization period, uncalcified articular cartilage glycosaminoglycan concentration was reduced by 20% to 23%, the reduction being largest (44%) in the superficial zone. The collagen fibril network showed no significant changes, but the amount of collagen crosslinks was reduced (13.5%) during immobilization. After remobilization, glycosaminoglycan concentration was restored at most sites, except for in the upper parts of uncalcified cartilage in the medial femoral and tibial condyles (9% to 17% less glycosaminoglycans than in controls). The incorporation of 35SO4 was not changed, and remobilization also did not alter the birefringence of collagen fibrils. Remobilization restored the proportion of collagen crosslinks to the control level. The changes induced by joint unloading were reversible at most sites investigated, but full restoration of articular cartilage glycosaminoglycan concentration was not obtained in all sites, even after remobilization for 50 weeks. This suggests that lengthy immobilization of a joint can cause long lasting articular cartilage proteoglycan alterations at the same time as collagen organization remains largely unchanged. Because proteoglycans exert strong influence on the biomechanical properties of cartilage, lengthy immobilization may jeopardize the well being of articular cartilage.

  • 285.
    Haapala, Jussi
    et al.
    Department of Surgery, Kuopio University Hospital, Kuopio, Finland.
    Lammi, Mikko
    Department of Anatomy, University of Kuopio, Kuopio, Finland.
    Inkinen, Ritva
    Department of Anatomy, University of Kuopio, Kuopio, Finland.
    Parkkinen, Jyrki
    Department of Anatomy, University of Kuopio, Kuopio, Finland.
    Ågren, Ulla
    Department of Anatomy, University of Kuopio, Kuopio, Finland.
    Arokoski, Jari
    Department of Physical and Rehabilitation Medicine, Kuopio University Hospital, Kuopio, Finland.
    Kiviranta, Ilkka
    Department of Surgery, Kuopio University Hospital, Kuopio, Finland.
    Helminen, Heikki
    Department of Anatomy, University of Kuopio, Kuopio, Finland.
    Tammi, Markku
    Department of Anatomy, University of Kuopio, Kuopio, Finland.
    Coordinated regulation of hyaluronan and aggrecan content in the articular cartilage of immobilized and exercised dogs.1996In: Journal of Rheumatology, ISSN 0315-162X, E-ISSN 1499-2752, Vol. 23, no 9, p. 1586-1593, article id 8877929Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE: To study the influence of joint loading and immobilization on articular cartilage hyaluronan concentration and histological distribution in the knee joints of young dogs subjected to 11 weeks' immobilization by splinting, and 15 weeks' running exercise at a rate of 40 km/day.

    METHODS: The amount of hyaluronan in articular cartilage was determined by a competitive binding assay using a biotinylated hyaluronan binding complex (HABC) of aggrecan and link protein. Histologic sections were stained for the localization of hyaluronan with the HABC probe. Extracted proteoglycans were characterized by sodium dodecyl sulfate agarose gel electrophoresis.

    RESULTS: Immobilization significantly reduced the concentration of hyaluronan in all sites studied (tibial and femoral condyles, patellar surface of femur). The proportion of hyaluronan to total uronic acid (mainly from aggrecan) remained unchanged because of a concurrent decrease in aggrecan. The ratio of hyaluronan and aggrecan remained constant also in runners. The staining pattern of free hyaluronan in the tissue sections and the electrophoretic mobility of the extracted proteoglycans were not affected by the different loading regimes.

    CONCLUSION: Reduced joint loading due to splint immobilization significantly decreases both hyaluronan and aggrecan in the articular cartilage. The remarkably parallel changes in aggrecan and hyaluronan content suggest that joint loading exerts a coordinated influence on their metabolism.

  • 286.
    Haider, Zahra
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    DNA methylation signatures in precursor lymphoid neoplasms: with focus on clinical implications &  the biology behind2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Precursor lymphoid neoplasms, namely acute lymphoblastic leukemias (ALL) and lymphoblastic lymphomas (LBL), are characterized by an aggressive proliferation of malignant progenitor B- or T-cells. To improve risk classification at diagnosis, better prognostic and treatment stratifying biomarkers are needed. Altered DNA methylation pattern is a hallmark of neoplastic transformation, and has been employed as a molecular prognostic and predictive marker in various cancers, including hematological malignancies. Our research group previously identified a CpG island methylator phenotype (CIMP) panel that classified pediatric T-ALL patients into prognostic subgroups.

    The aim of this thesis was to evaluate distinct DNA methylation signatures in precursor lymphoid neoplasms, and to validate the prognostic value of CIMP classification in separate patient cohorts. Additionally, the biological mechanisms underlying the distinct CIMP methylation signatures in these malignancies were investigated.

    The prognostic relevance of CIMP classification was validated in an independent Nordic cohort of pediatric T-ALL patients. Combination of CIMP status with minimal residual disease (MRD) status, could further dissect the high-risk MRD positive T-ALL patients into two CIMP subgroups with significantly distinct outcomes. Furthermore, CIMP classification at diagnosis was shown to predict overall survival in relapsed BCP-ALL patients. CIMP methylation signatures were also identified in T-LBL patients, indicating a broader relevance of CIMP based classification in lymphoid malignancies. Investigating the biology behind CIMP methylation signatures showed the association of CIMP status with the proliferative history of the leukemic cells. A differential transcriptomic analysis revealed a correlation of CIMP subgroups with known T-ALL drivers, as well as with novel genes in T-ALL biology. Finally, we identified distinct DNA methylation patterns and genetic aberrations in T-ALL and T-LBL that might contribute to the different clinical presentation of these two diseases. In conclusion, we validated the prognostic significance of CIMP methylation signature in precursor lymphoid malignancies and identified transcriptomic profiles that associated with the subgroups. DNA methylation is a strong candidate for further risk classification in lymphoid neoplasms and our findings can contribute to the identification of new potential targets for treatment.

  • 287.
    Haider, Zahra
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Larsson, Pär
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Landfors, Mattias
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Köhn, Linda
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology. Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    Schmiegelow, Kjeld
    Flaegstad, Trond
    Kanerva, Jukka
    Heyman, Mats
    Hultdin, Magnus
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Degerman, Sofie
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    An integrated transcriptome analysis in T-cell acute lymphoblastic leukemia links DNA methylation subgroups to dysregulated TAL1 and ANTP homeobox gene expression2019In: Cancer Medicine, ISSN 2045-7634, E-ISSN 2045-7634, Vol. 8, no 1, p. 311-324Article in journal (Refereed)
    Abstract [en]

    Classification of pediatric T‐cell acute lymphoblastic leukemia (T‐ALL) patients into CIMP (CpG Island Methylator Phenotype) subgroups has the potential to improve current risk stratification. To investigate the biology behind these CIMP subgroups, diagnostic samples from Nordic pediatric T‐ALL patients were characterized by genome‐wide methylation arrays, followed by targeted exome sequencing, telomere length measurement, and RNA sequencing. The CIMP subgroups did not correlate significantly with variations in epigenetic regulators. However, the CIMP+ subgroup, associated with better prognosis, showed indicators of longer replicative history, including shorter telomere length (P = 0.015) and older epigenetic (P < 0.001) and mitotic age (P < 0.001). Moreover, the CIMP+ subgroup had significantly higher expression of ANTP homeobox oncogenes, namely TLX3, HOXA9, HOXA10, and NKX2‐1, and novel genes in T‐ALL biology including PLCB4, PLXND1, and MYO18B. The CIMP− subgroup, with worse prognosis, was associated with higher expression of TAL1 along with frequent STIL‐TAL1 fusions (2/40 in CIMP+ vs 11/24 in CIMP−), as well as stronger expression of BEX1. Altogether, our findings suggest different routes for leukemogenic transformation in the T‐ALL CIMP subgroups, indicated by different replicative histories and distinct methylomic and transcriptomic profiles. These novel findings can lead to new therapeutic strategies.

  • 288.
    Hakobyan, Shoghik
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Boily, Jean-François
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Ramstedt, Madeleine
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Proton and gallium(III) binding properties of a biologically active salicylidene acylhydrazide2014In: Journal of Inorganic Biochemistry, ISSN 0162-0134, E-ISSN 1873-3344, Vol. 138, p. 9-15Article in journal (Refereed)
    Abstract [en]

    Bacterial biofilm formation causes a range of problems in our society, especially in health care. Salicylidene acylhydrazides (hydrazones) are promising antivirulence drugs targeting secretion systems used during bacterial infection of host cells. When mixed with the gallium ion they become especially potent as bacterial and biofilm growth-suppressing agents, although the mechanisms through which this occurs are not fully understood. At the base of this uncertainty lies the nature of hydrazone-metal interactions. This study addresses this issue by resolving the equilibrium speciation of hydrazone-gallium aqueous solutions. The protonation constants of the target 2-oxo-2-[N-(2,4,6-trihydroxy-benzylidene)-hydrazino]-acetamide (ME0163) hydrazone species and of its 2,4,6-trihydroxybenzaldehyde and oxamic acid hydrazide building blocks were determined by UV-visible spectrophotometry to achieve this goal. These studies show that the hydrazone is an excessively strong complexing agent for gallium and that its antivirulence properties are predominantly ascribed to monomeric 1:1Ga-ME0163 complexes of various Ga hydrolysis and ME0163 protonation states. The chelation of Ga(III) to the hydrazone also increased the stability of the compounds against acid-induced hydrolysis, making this group of compounds very interesting for biological applications where the Fe-antagonist action of both Ga(III) and the hydrazone can be combined for enhanced biological effect.

  • 289.
    Hakobyan, Shoghik
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Rzhepishevska, Olena
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Björn, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Boily, Jean-François
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Ramstedt, Madeleine
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Influence of Chelation Strength and Bacterial Uptake of Gallium Salicylidene Acylhydrazide on Biofilm Formation and Virulence by Pseudomonas aeruginosa2016In: Journal of Inorganic Biochemistry, ISSN 0162-0134, E-ISSN 1873-3344, Vol. 160, p. 24-32Article in journal (Refereed)
    Abstract [en]

    Development of antibiotic resistance in bacteria causes major challenges for our society and has prompted a great need for new and alternative treatment methods for infection. One promising approach is to target bacterial virulence using for example salicylidene acylhydrazides (hydrazones). Hydrazones coordinate metal ions such as Fe(III) and Ga(III) through a five-membered and a six-membered chelation ring. One suggested mode of action is via restricting bacterial Fe uptake. Thus, it was hypothesized that the chelating strength of these substances could be used to predict their biological activity on bacterial cells. This was investigated by comparing Ga chelation strength of two hydrazone complexes, as well as bacterial Ga uptake, biofilm formation, and virulence in the form of production and secretion of a toxin (ExoS) by Pseudomonas aeruginosa. Equilibrium constants for deprotonation and Ga(III) binding of the hydrazone N′-(5-chloro-2-hydroxy-3-methylbenzylidene)-2,4-dihydroxybenzhydrazide (ME0329), with anti-virulence effect against P. aeruginosa, were determined and compared to bacterial siderophores and the previously described Ga(III) 2-oxo-2-[N-(2,4,6-trihydroxy-benzylidene)-hydrazino]-acetamide (Ga-ME0163) and Ga-citrate complexes. In comparison with these two complexes, it was shown that the uptake of Ga(III) was higher from the Ga-ME0329 complex. The results further show that the Ga-ME0329 complex reduced ExoS expression and secretion to a higher extent than Ga-citrate, Ga-ME0163 or the non-coordinated hydrazone. However, the effect against biofilm formation by P. aeruginosa, by the ME0329 complex, was similar to Ga-citrate and lower than what has been reported for Ga-ME0163.

  • 290.
    Hall, Michael
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    The chloroplast lumen: New insights into thiol redox regulation and functions of lumenal proteins2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In higher plants oxygenic photosynthesis primarily takes place in the chloroplasts of leaves. Within the chloroplasts is an intricate membrane system, the thylakoid membrane, which is the site of light harvesting and photosynthetic electron transport. Enclosed by this membrane is the lumen space, which initially was believed to only contain a few proteins, but now is known to house a distinct set of >50 proteins, many for which there is still no proposed function. The work presented in this thesis is focused on understanding the functions of the proteins in the lumen space. Using proteomic methods, we investigated first the regulation of lumenal proteins by light and secondly by dithiol-disulphide exchange, mediated by the disulphide reductase protein thioredoxin. We furthermore performed structural and functional studies of the lumenal pentapeptide repeat proteins and of the PsbP-domain protein PPD6. When studying the diurnal expression pattern of the lumen proteins, using difference gel electrophoresis, we observed an increased abundance of fifteen lumen protein in light-adapted Arabidopsis thaliana plants. Among these proteins were subunits of the oxygen evolving complex, plastocyanin and proteins of unknown function. In our analysis of putative lumenal targets of thioredoxin, we identified nineteen proteins, constituting more than 40 % of the lumen proteins observable by our methods. A subset of these putative target proteins were selected for further studies, including structure determination by x-ray crystallography. The crystal structure of the pentapeptide repeat protein TL15 was solved to 1.3 Å resolution and further biochemical characterization suggested that it may function as a novel type of redox regulated molecular chaperone in the lumen. PPD6, a member of the PsbP-family of proteins, which is unique in that it possesses a conserved disulphide bond not found in any other PsbP-family protein, was also expressed, purified and crystallized. A preliminary x-ray analysis suggests that PPD6 exists as a dimer in the crystalline state and binds zinc ions. The high representation of targets of thioredoxin among the lumen proteins, along with the characterization of the pentapeptide repeat protein family, implies that dithiol-disulphide exchange reactions play an important role in the thylakoid lumen of higher plants, regulating processes such as photoprotection, protein turnover and protein folding.

  • 291.
    Hall, Michael
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Hasegawa, Yoshiaki
    Yoshimura, Fuminobu
    Persson, Karina
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Structural and functional characterization of shaft, anchor, and tip proteins of the Mfa1 fimbria from the periodontal pathogen Porphyromonas gingivalis2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 1793Article in journal (Refereed)
    Abstract [en]

    Very little is known about how fimbriae of Bacteroidetes bacteria are assembled. To shed more light on this process, we solved the crystal structures of the shaft protein Mfa1, the regulatory protein Mfa2, and the tip protein Mfa3 from the periodontal pathogen Porphyromonas gingivalis. Together these build up part of the Mfa1 fimbria and represent three of the five proteins, Mfa1-5, encoded by the mfa1 gene cluster. Mfa1, Mfa2 and Mfa3 have the same overall fold i.e., two β-sandwich domains. Upon polymerization, the first β-strand of the shaft or tip protein is removed by indigenous proteases. Although the resulting void is expected to be filled by a donor-strand from another fimbrial protein, the mechanism by which it does so is still not established. In contrast, the first β-strand in Mfa2, the anchoring protein, is firmly attached by a disulphide bond and is not cleaved. Based on the structural information, we created multiple mutations in P. gingivalis and analysed their effect on fimbrial polymerization and assembly in vivo. Collectively, these data suggest an important role for the C-terminal tail of Mfa1, but not of Mfa3, affecting both polymerization and maturation of downstream fimbrial proteins.

  • 292.
    Hall, Michael
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    von Sydow, Lotta
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Storm, Patrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sauer, Uwe
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Kieselbach, Thomas
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Schröder, Wolfgang
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    The lumenal pentapeptide repeat proteins TL15 and TL20.3 are novel chaperone-like proteins in the chloroplast lumen of higher plantsManuscript (preprint) (Other academic)
    Abstract [en]

    In the thylakoid lumen of Arabidopsis thaliana, three pentapeptide repeat family proteins of unknown function are localized. Pentapeptide repeat proteins (PRP) are comprised of at least eight tandem repeats of five amino acids of the consensus sequence A(D/N)LXX, which fold into a quadrilateral beta helix structure. Here we have solved the crystal structure of the mature form of the lumenal PRP protein TL15 to 1.3 Å resolution. TL15 is comprised of a main pentapeptide domain, consisting of a total of 19 pentapeptide repeats which form five turns of a beta helix, and a C-terminal alpha helix domain consisting of two alpha helices. The alpha helices form a ‘cap’ at the C-terminal end of the beta helix and are connected by a disulphide bond between the conserved cysteine residues C122 and C142. Furthermore we show that the lumenal PRPs TL15 and TL20.3 can assist in refolding of a chemically denatured substrate in vitro, indicating foldase chaperone activity. The three lumenal PRPs have been previously identified as targets of thioredoxin, and interestingly we observed a greatly increased chaperone activity of TL15 and TL20.3 after reduction of their disulphide bonds. Our results provide the high resolution crystal structure of the TL15 protein and our analysis of chaperone activity suggests that TL15 and TL20.3 may constitute a novel type of redox-regulated molecular chaperones in the chloroplast lumen of higher plants.

  • 293.
    Hall, Michael
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wagner, Raik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Lam, Xuan Tam
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Funk, Christiane
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Persson, Karina
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    The HhoA protease from Synechocystis sp. PCC 6803: novel insights into structure and activity regulation2017In: Journal of Structural Biology, ISSN 1047-8477, E-ISSN 1095-8657, Vol. 198, no 3, p. 147-153Article in journal (Refereed)
    Abstract [en]

    Proteases play a vital role in the removal of proteins, which become damaged due to temperature or oxidative stress. Important to this process in the cyanobacterium Synechocystis sp. PCC6803 is the family of Deg/HtrA proteases; HhoA (sll1679), HhoB (sll1427) and HtrA (slr1204). While previous studies have elucidated the structures of Deg/HtrA proteases from Escherichia coli and from the chloroplast of the higher plant Arabidopsis thaliana, no structural data have been available for any Deg/HtrA protease from cyanobacteria, the evolutionary ancestor of the chloroplast. To gain a deeper insight into the molecular mechanisms and regulation of these proteins we have solved the structure of the Synechocystis HhoA protease in complex with a co-purified peptide by X-ray crystallography. HhoA assembles into stable trimers, mediated by its protease domain and further into a cage-like hexamer by a novel interaction between the PDZ domains of opposing trimers. Each PDZ domain contains two loops for PDZ-PDZ formation: interaction clamp one and two (IC1, IC2). IC1 interacts with IC2 on the opposing PDZ domain and vice versa. Our structure shows a peptide bound to a conserved groove on the PDZ domain and the properties of this pocket suggest that it binds substrate proteins as well as the neo C-termini of cleaved substrates. In agreement with previous studies showing the proteolytic activity of HhoA to be activated by Ca2+ or Mg2+, binding of divalent metal ions to the central channel of the trimer by the L1 activation loop was observed.

  • 294. Hamidi, Anahita
    et al.
    von Bulow, Verena
    Hamidi, Rosita
    Winssinger, Nicolas
    Barluenga, Sofia
    Heldin, Carl-Henrik
    Landström, Marene
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Polyubiquitination of Transforming Growth Factor beta (TGF beta)-associated Kinase 1 Mediates Nuclear Factor-kappa B Activation in Response to Different Inflammatory Stimuli2012In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 287, no 1, p. 123-133Article in journal (Refereed)
    Abstract [en]

    The transcription factor nuclear factor kappa B (NF-kappa B) plays a central role in regulating inflammation in response to several external signals. The TGF beta-associated kinase 1 (TAK1) is an upstream regulator of NF-kappa B signaling. In TGF beta-stimulated cells, TAK1 undergoes Lys-63-linked polyubiquitination at Lys-34 by TNF receptor-associated factor 6 and is thereby activated. The aim of this study was to investigate whether TAK1 polyubiquitination at Lys-34 is also essential for NF-kappa B activation via TNF receptor, IL-1 receptor and toll-like receptor 4. We observed that TAK1 polyubiquitination occurred at Lys-34 and required the E3 ubiquitin ligase TNF receptor-associated factor 6 after stimulation of cells with IL-1 beta. Polyubiquitination of TAK1 also occurred at Lys-34 in cells stimulated by TNF-alpha and LPS, which activates TLR4, as well as in HepG2 and prostate cancer cells stimulated with TGF beta, which in all cases resulted in NF-kappa B activation. Expression of a K34R-mutant TAK1 led to a reduced NF-kappa B activation, IL-6 promoter activity, and proinflammatory cytokine secretion by TNF-alpha-stimulated PC-3U cells. Similar results were obtained in the mouse macrophage cell line RAW264.7 after LPS treatment. In conclusion, polyubiquitination of TAK1 is correlated with activation of TAK1 and is essential for activation of NF-kappa B signaling downstream of several receptors.

  • 295.
    Hammarström, Sten
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Immunology/Immunchemistry.
    Baranov, Vladimir
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Immunology.
    Is there a role for CEA in innate immunity in the colon?2001In: Trends in Microbiology, ISSN 0966-842X, E-ISSN 1878-4380, Vol. 9, no 3, p. 119-25Article in journal (Refereed)
    Abstract [en]

    Carcinoembryonic antigen (CEA) is a well known tumor marker associated with the progression of colorectal tumors. The CEA family of glycoproteins has been fully characterized and the function of some of its members is now beginning to be understood. Here, we advance the hypothesis that, rather than functioning in cell adhesion as has been suggested previously, CEA plays a role in protecting the colonic mucosa from microbial invasion. This hypothesis is based on new microscopic, molecular, phylogenetic and microbiological evidence.

  • 296. Hammer, Neal D
    et al.
    McGuffie, Bryan A
    Zhou, Yizhou
    Badtke, Matthew P
    Reineke, Ashley A
    Brännström, Kristoffer
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Gestwicki, Jason E
    Olofsson, Anders
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chapman, Matthew R
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    The C-terminal repeating units of CsgB direct bacterial functional amyloid nucleation2012In: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 422, no 3, p. 376-389Article in journal (Refereed)
    Abstract [en]

    Curli are functional amyloids produced by enteric bacteria. The major curli fiber subunit, CsgA, self-assembles into an amyloid fiber in vitro. The minor curli subunit protein, CsgB, is required for CsgA polymerization on the cell surface. Both CsgA and CsgB are composed of five predicted β–strand-loop-β–strand-loop repeating units that feature conserved glutamine and asparagine residues. Because of this structural homology, we proposed that CsgB might form an amyloid template that initiates CsgA polymerization on the cell surface. To test this model, we purified wild-type CsgB, and found that it self-assembled into amyloid fibers in vitro. Preformed CsgB fibers seeded CsgA polymerization as did soluble CsgB added to the surface of cells secreting soluble CsgA. To define the molecular basis of CsgB nucleation, we generated a series of mutants that removed each of the five repeating units. Each of these CsgB deletion mutants was capable of self-assembly in vitro. In vivo, membrane-localized mutants lacking the 1st, 2nd or 3rd repeating units were able to convert CsgA into fibers. However, mutants missing either the 4th or 5th repeating units were unable to complement a csgB mutant. These mutant proteins were not localized to the outer membrane, but were instead secreted into the extracellular milieu. Synthetic CsgB peptides corresponding to repeating units 1, 2 and 4 self assembled into ordered amyloid polymers, while peptides corresponding to repeating units 3 and 5 did not, suggesting that there are redundant amyloidogenic domains in CsgB. Our results suggest a model where the rapid conversion of CsgB from unstructured protein to a β-sheet-rich amyloid template anchored to the cell surface is mediated by the C-terminal repeating units.

  • 297.
    Han, Guangye
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Mamedov, Fikret
    Styring, Stenbjörn
    Misses during Water Oxidation in Photosystem II Are S State-dependent2012In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 287, no 16, p. 13422-13429Article in journal (Refereed)
    Abstract [en]

    The period of four oscillation of the S state intermediates of the water oxidizing complex in Photosystem II (PSII) is commonly analyzed by the Kok parameters. The important miss factor determines the efficiency for each S transition. Commonly, an equal miss factor has been used in the analysis. We have used EPR signals which probe all S states in the same sample during S cycle advancement. This allows, for the first time, to measure directly the miss parameter for each S state transition. Experiments were performed in PSII membrane preparations from spinach in the presence of electron acceptor at 1 degrees C and 20 degrees C. The data show that the miss parameter is different in different transitions and shows different temperature dependence. We found no misses at 1 degrees C and 10% misses at 20 degrees C during the S-1 -> S-2 transition. The highest miss factor was found in the S-2 -> S-3 transition which decreased from 23% to 16% with increasing temperature. For the S-3 -> S-0 transition the miss parameter was found to be 7% at 1 degrees C and decreased to 3% at 20 degrees C. For the S-0 -> S-1 transition the miss parameter was found to be approximately 10% at both temperatures. The contribution from the acceptor side in the form of recombination reactions as well as from the donor side of PSII to the uneven misses is discussed. It is suggested that the different transition efficiency in each S transition partly reflects the chemistry at the CaMn4O5 cluster. That consequently contributes to the uneven misses during S cycle turnover in PSII.

  • 298. Hariharan, Parameswaran
    et al.
    Andersson, Magnus
    KTH, Beräkningsbiofysik.
    Jiang, Xiaoxu
    Pardon, Els
    Steyaert, Jan
    Kaback, H. Ronald
    Guan, Lan
    Thermodynamics of Nanobody Binding to Lactose Permease2016In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 55, no 42, p. 5917-5926Article in journal (Refereed)
    Abstract [en]

    Camelid nanobodies (Nbs) raised against the outward-facing conformer of a double-Trp mutant of the lactose permease of Escherichia coli (LacY) stabilize the permease in outward-facing conformations. Isothermal titration calorimetry is applied herein to dissect the binding thermodynamics of two Nbs, one that markedly improves access to the sugar-binding site and another that dramatically increases the affinity for galactoside. The findings presented here show that both enthalpy and entropy contribute favorably to binding of the Nbs to wild-type (WT) LacY and that binding of Nb to double-Trp mutant G46W/G262W is driven by a greater enthalpy at an entropic penalty. Thermodynamic analyses support the interpretation that WT LacY is stabilized in outward-facing conformations like the double-Trp mutant with closure of the cytoplasmic cavity through conformational selection. The LacY conformational transition required for ligand binding is reflected by a favorable entropy increase. Molecular dynamics simulations further suggest that the entropy increase likely stems from release of immobilized water molecules primarily from the cytoplasmic cavity upon closure.

  • 299.
    Harju, Mikael
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Bergman, Anders
    Olsson, Mats
    Roos, Anna
    Haglund, Peter
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Determination of atropisomeric and planar polychlorinated biphenyls, their enantiomeric fractions and tissue distribution in grey seals using comprehensive 2D gas chromatography2003In: Journal of Chromatography A, ISSN 0021-9673, E-ISSN 1873-3778, Vol. 1019, no 1-2, p. 127-142Article in journal (Refereed)
    Abstract [en]

    High prevalence of uterine occlusions and sterility is found among Baltic ringed and grey seal. Polychlorinated biphenyls (CBs) are suspected to be the main cause. The CB concentrations are higher in affected than in healthy animals, but the natural variation is considerable. Thus, it might be possible to assess the health status of seals by CB analysis. The ratios of chiral compounds (enantiomeric fractions (EFs)) such as atropisomeric CBs are of particular interest, since these may reflect differences in metabolic rates. An analytical procedure was developed and used to determine the levels of atropisomeric CBs, planar-CBs (WHO-PCBs) and total CBs in seals of different health status. Comprehensive 2D gas chromatography (GC×GC) was used to separate the target analytes from other CBs and interferences and a micro electron-capture detector (μECD) was used for detection. EFs of the atropisomeric CBs were difficult to determine as the levels were low and the interferences many. Two column combinations had to be used to avoid biased results—both had a chiral column as first-dimension column. The second-dimension column was coated with either a high-polarity cyanopropyl or a liquid crystal phase. EFs were determined for five atropisomeric CBs, i.e. CBs 91, 95, 132, 149 and 174. The results were verified by GC×GC–time-of-flight mass spectrometry (TOF-MS). Some atropisomeric CBs had EFs that deviated strongly from the racemic-mixture value. The deviations were larger in liver than blubber, which indicates enantioselective metabolism. However, there was no selective passage of the studied atropisomeric CBs across placenta and no selective blood–brain barrier. Similarly, no correlation between EFs and health status was observed, although there was a correlation between the total CB levels and health status.

  • 300. Hartmann, Laura
    et al.
    Pedrotti, Lorenzo
    Weiste, Christoph
    Fekete, Agnes
    Schierstaedt, Jasper
    Göttler, Jasmin
    Kempa, Stefan
    Krischke, Markus
    Dietrich, Katrin
    Mueller, Martin J
    Vicente-Carbajosa, Jesus
    Hanson, Johannes
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Department of Molecular Plant Physiology, Utrecht University, The Netherlands .
    Dröge-Laser, Wolfgang
    Crosstalk between Two bZIP Signaling Pathways Orchestrates Salt-Induced Metabolic Reprogramming in Arabidopsis Roots2015In: The Plant Cell, ISSN 1040-4651, E-ISSN 1532-298X, Vol. 27, no 8, p. 2244-2260Article in journal (Refereed)
    Abstract [en]

    Soil salinity increasingly causes crop losses worldwide. Although roots are the primary targets of salt stress, the signaling networks that facilitate metabolic reprogramming to induce stress tolerance are less understood than those in leaves. Here, a combination of transcriptomic and metabolic approaches was performed in salt-treated Arabidopsis thaliana roots, which revealed that the group S1 basic leucine zipper transcription factors bZIP1 and bZIP53 reprogram primary C- and N-metabolism. In particular, gluconeogenesis and amino acid catabolism are affected by these transcription factors. Importantly, bZIP1 expression reflects cellular stress and energy status in roots. In addition to the well-described abiotic stress response pathway initiated by the hormone abscisic acid (ABA) and executed by SnRK2 (Snf1-RELATED-PROTEIN-KINASE2) and AREB-like bZIP factors, we identify a structurally related ABA-independent signaling module consisting of SnRK1s and S1 bZIPs. Crosstalk between these signaling pathways recruits particular bZIP factor combinations to establish at least four distinct gene expression patterns. Understanding this signaling network provides a framework for securing future crop productivity.

3456789 251 - 300 of 897
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf