umu.sePublikasjoner
Endre søk
Begrens søket
12 51 - 61 of 61
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 51.
    Pitkänen, Timo
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Institute of Space Sciences, Shandong University, Weihai, China.
    Kullen, A.
    Shi, Q. Q.
    Hamrin, Maria
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    De Spiegeleer, Alexandre
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Nishimura, Y.
    Convection electric field and plasma convection in a twisted magnetotail: t THEMIS case study 1-2 January 20092018Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 9, s. 7486-7497Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We investigate THEMIS satellite measurements made in a tail-aligned constellation during a time interval on 1-2 January 2009, which has previously been attributed to an interval of an interplanetary magnetic fieldB(y)-driven magnetotail twisting. We find evidence for that the orientation of the convection electric field in the tail is twist-mode dependent. For earthward flow and a negative twist (induced tail B-y < 0), the electric field is found to have northward E-z and tailward E-x components. During a positive twist (induced tail B-y > 0), the directions of E-z and E-x are reversed. The E-y component shows the expected dawn-to-dusk direction for earthward flow. The electric field components preserve their orientation across the neutral sheet, and a quasi-collinear field is observed irrespective to the tail distance. The electric field associated with the tailward flow has an opposite direction compared to the earthward flow for the negative twist. For the positive twist, the results are less clear. The corresponding plasma convection and thus the magnetic flux transport have an opposite dawn-dusk direction above and below the neutral sheet. The directions depend on the tail twist mode. The hemispherically asymmetric earthward plasma flows are suggested to be a manifestation of an asymmetric Dungey cycle in a twisted magnetotail. The role of tailward flows deserve further investigation.

  • 52.
    Rönnmark, Kjell
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Hamrin, Maria
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Auroral Electron acceleration by Alfven waves and electrostatic fields2000Inngår i: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 105, nr A11, s. 25333-25344Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present a two-dimensional numerical model for the formation of discrete auroral arcs. This model describes the evolution of shear Alfven waves generated by a growing force near the equatorial plane, and the transition to electrostatic fields when the force becomes stationary. The parallel electric fields on auroral field lines may be regarded as shear Alfven waves driven by a magnetospheric generator at zero frequency. In our collisionless model, precipitating auroral electrons are accelerated to an energy of 350 eV when the upward current is 3.1 mu Am-2. We also find that the electrostatic potential drop is proportional to the square of the current density.

    Fulltekst (pdf)
    fulltext
  • 53. Slapak, R.
    et al.
    Gunell, H.
    Hamrin, Maria
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Observations of multiharmonic ion cyclotron waves due to inverse ion cyclotron damping in the northern magnetospheric cusp2017Inngår i: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 44, nr 1, s. 22-29Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present a case study of inverse ion cyclotron damping taking place in the northern terrestrial magnetospheric cusp, exciting waves at the ion cyclotron frequency and its harmonics. The ion cyclotron waves are primarily seen as peaks in the magnetic-field spectral densities. The corresponding peaks in the electric-field spectral densities are not as profound, suggesting a background electric field noise or other processes of wave generation causing the electric spectral densities to smoothen out more compared to the magnetic counterpart. The required condition for inverse ion cyclotron damping is a velocity shear in the magnetic field-aligned ion bulk flow, and this condition is often naturally met for magnetosheath influx in the northern magnetospheric cusp, just as in the presented case. We note that some ion cyclotron wave activity is present in a few similar shear events in the southern cusp, which indicates that other mechanisms generating ion cyclotron waves may also be present during such conditions.

    Fulltekst (pdf)
    fulltext
  • 54. Slapak, Rikard
    et al.
    Hamrin, Maria
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Pitkänen, Timo
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Yamauchi, Masatoshi
    Nilsson, Hans
    Karlsson, Tomas
    Schillings, Audrey
    Quantification of the total ion transport in the near-Earth plasma sheet2017Inngår i: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 35, nr 4, s. 869-877Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Recent studies strongly suggest that a majority of the observed O+ cusp outflows will eventually escape into the solar wind, rather than be transported to the plasma sheet. Therefore, an investigation of plasma sheet flows will add to these studies and give a more complete picture of magnetospheric ion dynamics. Specifically, it will provide a greater understanding of atmospheric loss. We have used Cluster spacecraft 4 to quantify the H+ and O+ total transports in the near-Earth plasma sheet, using data covering 2001-2005. The results show that both H+ and O+ have earthward net fluxes of the orders of 1026 and 1024 s(-1), respectively. The O+ plasma sheet return flux is 1 order of magnitude smaller than the O+ outflows observed in the cusps, strengthening the view that most ionospheric O+ outflows do escape. The H+ return flux is approximately the same as the ionospheric outflow, suggesting a stable budget of H+ in the magnetosphere. However, low-energy H+, not detectable by the ion spectrometer, is not considered in our study, leaving the complete magnetospheric H+ circulation an open question. Studying tailward flows separately reveals a total tailward O+ flux of about 0 : 5 x w10(25)s(-1), which can be considered as a lower limit of the nightside auroral region O+ outflow. Lower velocity flows (< 100 km s(-1)) contribute most to the total transports, whereas the high-velocity flows contribute very little, suggesting that bursty bulk flows are not dominant in plasma sheet mass transport.

    Fulltekst (pdf)
    fulltext
  • 55.
    Vaverka, Jakub
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. National I nstitute of Polar Research, Tachikawa, Japan; Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
    Nakamura, Takuji
    Kero, Johan
    Mann, Ingrid
    De Spiegeleer, Alexandre
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Hamrin, Maria
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Norberg, Carol
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Swedish Institute of Space Physics,Kiruna, Sweden.
    Lindqvist, Per-Arne
    Pellinen-Wannberg, Asta
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Swedish Institute of Space Physics,Kiruna, Sweden.
    Comparison of Dust Impact and Solitary Wave Signatures Detected by Multiple Electric Field Antennas Onboard the MMS Spacecraft2018Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 8, s. 6119-6129Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Dust impact detection by electric field instruments is a relatively new method. However, the influence of dust impacts on electric field measurements is not completely understood and explained. A better understanding is very important for reliable dust impact identification, especially in environments with low dust impact rate. Using data from Earth-orbiting Magnetospheric Multiscale mission (MMS) spacecraft, we present a study of various pulses detected simultaneously by multiple electric field antennas in the monopole (probe-to-spacecraft potential measurement) and dipole (probe-to-probe potential measurement) configurations. The study includes data obtained during an impact of a millimeter-sized object. We show that the identification of dust impacts by a single antenna is a very challenging issue in environments where solitary waves are commonly present and that some pulses can be easily misinterpreted as dust impacts. We used data from multiple antennas to distinguish between changes in the spacecraft potential (dust impact) and structures in the ambient plasma or electric field. Our results indicate that an impact cloud is in some cases able to influence the potential of the electric field antenna during its expansion.

  • 56.
    Vaverka, Jakub
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Pellinen-Wannberg, Asta
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Swedish Institute of Space Physics, Kiruna, Sweden.
    Kero, Johan
    Swedish Institute of Space Physics, Kiruna, Sweden.
    Mann, Ingrid
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Arctic University of Norway, Tromsø, Norway.
    De Spiegeleer, Alexandre
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Hamrin, Maria
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Norberg, Carol
    Swedish Institute of Space Physics, Kiruna, Sweden.
    Pitkänen, Timo
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Detection of EMPs generated by meteoroid impacts on the MMS spacecraft and problems with signal interpretation2017Inngår i: 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), IEEE, 2017Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Signatures of hypervelocity dust impacts detected by electric field instruments are still not completely understood. We have used the electric field instrument onboard one of the MMS spacecraft orbiting the Earth since 2015 to study various pulses in the measured electric field detected simultaneously by multiple antennas. This unique instrument allows a detailed investigation of registered waveforms. The preliminary results shown that the solitary waves can generate similar pulses as dust impacts and detected pulses can easily by misinterpreted when only one antenna is used.

  • 57.
    Vaverka, Jakub
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Pellinen-Wannberg, Asta
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Swedish Institute of Space Physics, Kiruna, Sweden.
    Kero, Johan
    Mann, Ingrid
    De Spiegeleer, Alexandre
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Hamrin, Maria
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Norberg, Carol
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Swedish Institute of Space Physics, Kiruna, Sweden.
    Pitkänen, Timo
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Detection of meteoroid hypervelocity impacts on the Cluster spacecraft: First results2017Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, nr 6, s. 6485-6494Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present the first study of dust impact events on one of the Earth-orbiting Cluster satellites. The events were identified in the measurements of the wide band data (WBD) instrument on board the satellite operating in monopole configuration. Since 2009 the instrument is operating in this configuration due to the loss of three electric probes and is therefore measuring the potential between the only operating antenna and the spacecraft body. Our study shows that the WBD instrument on Cluster 1 is able to detect pulses generated by dust impacts and discusses four such events. The presence of instrumental effects, intensive natural waves, noncontinuous sampling modes, and the automatic gain control complicates this detection. Due to all these features, we conclude that the Cluster spacecraft are not ideal for dust impact studies. We show that the duration and amplitudes of the pulses recorded by Cluster are similar to pulses detected by STEREO, and the shape of the pulses can be described with the model of the recollection of impact cloud electrons by the positively charged spacecraft. We estimate that the detected impacts were generated by micron-sized grains with velocities in the order of tens of km/s.

    Fulltekst (pdf)
    fulltext
  • 58.
    Vaverka, Jakub
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Pellinen-Wannberg, Asta
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Swedish Institute of Space Physics, Kiruna, Sweden.
    Kero, Johan
    Mann, Ingrid
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Arctic University of Norway, Tromsø, Norway.
    De Spiegeleer, Alexandre
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Hamrin, Maria
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Norberg, Carol
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Pitkänen, Timo
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Potential of Earth Orbiting Spacecraft Influenced by Meteoroid Hypervelocity Impacts2017Inngår i: IEEE Transactions on Plasma Science, ISSN 0093-3813, E-ISSN 1939-9375, Vol. 45, nr 8, s. 2048-2055Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Detection of hypervelocity impacts on a spacecraft body using electric field instruments has been established as a new method for monitoring of dust grains in our solar system. Voyager, WIND, Cassini, and STEREO spacecraft have shown that this technique can be a complementary method to conventional dust detectors. This approach uses fast short time changes in the spacecraft potential generated by hypervelocity dust impacts, which can be detected by monopole electric field instruments as a pulse in the measured electric field. The shape and the duration of the pulse strongly depend on parameters of the ambient plasma environment. This fact is very important for Earth orbiting spacecraft crossing various regions of the Earth's magnetosphere where the concentration and the temperature of plasma particles change significantly. We present the numerical simulations of spacecraft charging focused on changes in the spacecraft potential generated by dust impacts in various locations of the Earth's magnetosphere. We show that identical dust impacts generate significantly larger pulses in regions with lower electron density. We discuss the influence of the photoelectron distribution for dust impact detections showing that a small amount of energetic photoelectrons significantly increases the potential of the spacecraft body and the pulse duration. We also show that the active spacecraft potential control (ASPOC) instrument onboard the cluster spacecraft strongly reduces the amplitude and the duration of the pulse resulting in difficulties of dust detection when ASPOC is ON. Simulation of dust impacts is compared with pulses detected by the Earth orbiting cluster spacecraft in the last part of Section III.

  • 59.
    Vaverka, Jakub
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Pellinen-Wannberg, Asta
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. e Swedish Institute of Space Physics, Kiruna, Sweden.
    Kero, Johan
    Swedish Institute of Space Physics, Kiruna, Sweden.
    Mann, Ingrid
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Arctic University of Norway, Tromsø, Norway.
    De Spiegeleer, Alexandre
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Hamrin, Maria
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Norberg, Carol
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Pitkänen, Timo
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Spacecraft potential influenced by meteoroid hypervelocity impacts2016Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Detection of hypervelocity impacts on a spacecraft body using electric field instruments has been established as a new method for monitoring of dust grains in our solar system. Voyager, WIND, Cassini, and STEREO spacecraft have shown that this technique can be a complementary method to conventional dust detectors. This approach uses fast short time changes in the spacecraft potential generated by hypervelocity dust impacts, which can be detected by monopole electric field instruments as a pulse in the measured electric field. The shape and the duration of the pulse strongly depend on parameters of the ambient plasma environment. This fact is very important for Earth orbiting spacecraft crossing various regions of the Earth's magnetosphere where the concentration and the temperature of plasma particles change significantly. We present the numerical simulations of spacecraft charging focused on changes in the spacecraft potential generated by dust impacts in various locations of the Earth's magnetosphere. We show that identical dust impacts generate significantly larger pulses in regions with lower electron density. We discuss the influence of the photoelectron distribution for dust impact detections showing that a small amount of energetic photoelectrons significantly increases the potential of the spacecraft body and the pulse duration. We also show that the active spacecraft potential control (ASPOC) instrument onboard the cluster spacecraft strongly reduces the amplitude and the duration of the pulse resulting in difficulties of dust detection when ASPOC is ON. Simulation of dust impacts is compared with pulses detected by the Earth orbiting cluster spacecraft in the last part of Section III.

  • 60. Yao, S. T.
    et al.
    Shi, Q. Q.
    Li, Z. Y.
    Wang, X. G.
    Tian, A. M.
    Sun, W. J.
    Hamrin, Maria
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Wang, M. M.
    Pitkänen, Timo
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Bai, S. C.
    Shen, X. C.
    Ji, X. F.
    Pokhotelov, D.
    Yao, Z. H.
    Xiao, T.
    Pu, Z. Y.
    Fu, S. Y.
    Zong, Q. G.
    De Spiegeleer, Alexandre
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Liu, W.
    Zhang, H.
    Reme, H.
    Propagation of small size magnetic holes in the magnetospheric plasma sheet2016Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, nr 6, s. 5510-5519Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Magnetic holes (MHs), characteristic structures where the magnetic field magnitude decreases significantly, have been frequently observed in space plasmas. Particularly, small size magnetic holes (SSMHs) which the scale is less than or close to the proton gyroradius are recently detected in the magnetospheric plasma sheet. In this study of Cluster observations, by the timing method, the minimum directional difference (MDD) method, and the spatiotemporal difference (STD) method, we obtain the propagation velocity of SSMHs in the plasma flow frame. Furthermore, based on electron magnetohydrodynamics (EMHD) theory we calculate the velocity, width, and depth of the electron solitary wave and compare it to SSMH observations. The result shows a good accord between the theory and the observation.

    Fulltekst (pdf)
    fulltext
  • 61.
    Yao, Shutao
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, China.
    Wang, X. G.
    Shi, Q. Q.
    Pitkänen, Timo
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Hamrin, Maria
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Yao, Z. H.
    Li, Z. Y.
    Ji, X. F.
    De Spiegeleer, Alexandre
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Xiao, Y. C.
    Tian, A. M.
    Pu, Z. Y.
    Zong, Q. G.
    Xiao, C. J.
    Fu, S. Y.
    Zhang, H.
    Russell, C. T.
    Giles, B. L.
    Guo, R. L.
    Sun, W. J.
    Li, W. Y.
    Zhou, X. Z.
    Huang, S. Y.
    Vaverka, Jakub
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Nowada, M.
    Bai, S. C.
    Wang, M. M.
    Liu, J.
    Observations of kinetic-size magnetic holes in the magnetosheath2017Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, nr 2, s. 1990-2000Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Magnetic holes (MHs), with a scale much greater than ρ(proton gyroradius), have been widely reported in various regions of space plasmas. On the other hand, kinetic-size magnetic holes (KSMHs), previously called small-size magnetic holes, with a scale of the order of magnitude of or less than ρi have only been reported in the Earth's magnetospheric plasma sheet. In this study, we report such KSMHs in the magnetosheath whereby we use measurements from the Magnetospheric Multiscale mission, which provides three-dimensional (3-D) particle distribution measurements with a resolution much higher than previous missions. The MHs have been observed in a scale of 10-20 ρe (electron gyroradii) and lasted 0.1-0.3 s. Distinctive electron dynamics features are observed, while no substantial deviations in ion data are seen. It is found that at the 90 degrees pitch angle, the flux of electrons with energy 34-66 eV decreased, while for electrons of energy 109-1024 eV increased inside the MHs. We also find the electron flow vortex perpendicular to the magnetic field, a feature self-consistent with the magnetic depression. Moreover, the calculated current density is mainly contributed by the electron diamagnetic drift, and the electron vortex flow is the diamagnetic drift flow. The electron magnetohydrodynamics soliton is considered as a possible generation mechanism for the KSMHs with the scale size of 10-20 ρe.

    Fulltekst (pdf)
    fulltext
12 51 - 61 of 61
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf