umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1234567 51 - 100 av 1060
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 51.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Force measuring optical tweezers system for long time measurements of P pili stability2006Ingår i: Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues IV / [ed] Farkas, DL, Nicolau, DV, Leif, RC, 2006, Vol. 6088, s. 608810-Konferensbidrag (Refereegranskat)
    Abstract [en]

    A force-measuring optical tweezers instrumentation and long time measurements of the elongation and retraction of bacterial fimbriae from Uropathogenic E. coli (UPEC) under strain are presented. The instrumentation is presented in some detail. Special emphasis is given to measures taken to reduce the influence of noise and drifts in the system and from the surrounding, which makes long term force measurements possible. Individual P pili from UPEC bacteria were used as a biological model system for repetitive unfolding and refolding cycles of bacterial fimbriae under equilibrium conditions. P pili have evolved into a three-dimensional helix-like structure, the PapA rod, that can be successively and significantly elongated and/or unfolded when exposed to external forces. The instrumentation is used for characterization of the force-vs.-elongation response of the PapA rod of individual P pili, with emphasis on the long time stability of the forced unfolding and refolding of the helical structure of the PapA rod. The results show that the PapA rod is capable of withstanding extensive strain, leading to a complete unfolding of the helical structure, repetitive times during the life cycle of a bacterium without any noticeable alteration of the mechanical properties of the P pili. This function is believed to be importance for UPEC bacteria in vivo since it provides a close contact to a host cell (which is an initial step of invasion) despite urine cleaning attempts.

  • 52.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Force measuring optical tweezers system for long time measurements of P pili stability2006Ingår i: Proceedings of the SPIE vol. 6088: Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues IV, 2006, s. 608810-Konferensbidrag (Refereegranskat)
  • 53.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Svantesson, Mats
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Björnham, Oscar
    Swedish Defence Research Agency (FOI), SE-906 21 Umeå, Sweden.
    Badahdah, Arwa
    Department of Oral Biology, Boston University School of Dental Medicine.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Bullitt, Esther
    Department of Physiology and Biophysics, Boston University School of Medicine.
    A structural basis for sustained bacterial adhesion: Biomechanical properties of CFA/I Pili2012Ingår i: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 415, nr 5, s. 918-928Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal disease worldwide. Adhesion pili (or fimbriae), such as the CFA/I (colonization factor antigen I) organelles that enable ETEC to attach efficiently to the host intestinal tract epithelium, are critical virulence factors for initiation of infection. We characterized at single organelle level the intrinsic biomechanical properties and kinetics of individual CFA/I pili, demonstrating that weak external forces (7.5 pN) are sufficient to unwind the intact helical filament of this prototypical ETEC pilus and that it quickly regains its original structure when the force is removed. While the general relationship between exertion of force and an increase in the filament length for CFA/I pili associated with diarrheal disease is analogous to that of P-pili and type 1 pili, associated with urinary tract and other infections, the biomechanical properties of these different pili differ in key quantitative details. Unique features of CFA/I pili, including the significantly lower force required for unwinding, the higher extension speed at which the pili enter a dynamic range of unwinding, and the appearance of sudden force drops during unwinding can be attributed to morphological features of CFA/I pili including weak layer-to-layer interactions between subunits on adjacent turns of the helix, and the approximately horizontal orientation of pilin subunits with respect to the filament axis. Our results indicate that ETEC CFA/I pili are flexible organelles optimized to withstand harsh motion without breaking, resulting in continued attachment to the intestinal epithelium by the pathogenic bacteria that express these pili.

  • 54.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    The biomechanical properties of E. coli pili for urinary tract attachment reflect the host environment2007Ingår i: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 93, nr 9, s. 3008-3014Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Uropathogenic Escherichia coli express pili that mediate binding to host tissue cells. We demonstrate with in situ force measuring optical tweezers that the ability of P and type 1 pili to elongate by unfolding under exposure to stress is a shared property with some differences. The unfolding force of the quaternary structures under equilibrium conditions is similar, 28 ± 2 and 30 ± 2 pN for P pili and type 1 pili, respectively. However, type 1 pili are found to be more rigid than P pili through their stronger layer-to-layer bonds. It was found that type 1 pili enter a dynamic regime at elongation speeds of 6 nm/s, compared to 400 nm/s for P pili; i.e., it responds faster to an external force. This possibly helps type 1 to withstand the irregular urine flow in the urethra as compared to the more constant urine flow in the upper urinary tract. Also, it was found that type 1 pili refold during retraction at two different levels that possibly could be related to several possible configurations. Our findings highlight functions that are believed to be of importance for the bacterial ability to sustain a basic antimicrobial mechanism of the host and for bacterial colonization.

  • 55.
    Andersson, Marie
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Immunopathogenesis of relapsing fever borreliosis2008Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Relapsing fever (RF) is caused by different species of Borrelia transmitted by soft ticks or by the human body louse. Illness is characterized by reappearing peaks of high concentrations of spirochetes in blood, concordant with fever peaks separated by asymptomatic periods. Neuroborreliosis is one of the most severe manifestations of RF borreliosis. To understand the immune response during early RF, we analyzed immune cells in brain and kidney of mice infected with B. crocidurae during the acute infection. Our results indicate that brain defense is comprised primarily of innate immune cells. Despite the infiltration of innate immune cells, Borrelia was not completely eradicated. A failure of the host brain to clear the bacteria may give the pathogen a niche where it can persist. Using our mouse model, we revealed that Borrelia duttonii could persist in the mouse brain for up to 270 days, without being present in the circulation. The infection was silent with no change in host gene expression, and the spirochetes could re-enter the circulation after immunosuppression. We propose that the brain is used by the pathogen to evade host immunity and serves as a possible natural reservoir for B. duttonii, a spirochete that has rarely been found in any mammalian host other than man. Borrelia-induced complications during pregnancy have been reported, and are especially common in RF. In our established mouse model of gestational RF, we could show that the fetuses suffered from severe pathology and growth retardation, probably as a consequence of placental destruction. We could also show trans-placental transmission of the bacteria leading to neonatal RF. Surprisingly, pregnant dams had a lower bacterial load and less severe disease, showing that pregnancy has a protective effect during RF. We have used the gestational RF model to investigate host factors favoring disease resolution. Because the spleen is the primary organ responsible for trapping and removing blood-borne pathogens, we have compared temporal changes in spleen immune cell populations and cytokine/chemokine induction during the infection. Spleens of pregnant mice had earlier neutrophil infiltration, as well as faster and higher production of pro-inflammatory mediators. This rapid, robust response suggests a more effective host defense. Thus, an enhanced pro-inflammatory response during pregnancy imparts a distinct advantage in controlling the severity of relapsing fever infection.

  • 56.
    Andersson, Marie
    et al.
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Larsson, Christer
    Nilsson, Ingela
    Guo, Betty P.
    Bergström, Sven
    Enhanced inflammatory response to relapsing fever during pregnancyManuskript (Övrigt vetenskapligt)
  • 57.
    Andersson, Marie
    et al.
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Nordstrand, Annika
    Shamaei-Tousi, Alireza
    Jansson, Anna
    Bergström, Sven
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Guo, Betty P
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    In situ immune response in brain and kidney during early relapsing fever borreliosis.2007Ingår i: Journal of Neuroimmunology, ISSN 0165-5728, E-ISSN 1872-8421, Vol. 183, nr 1-2, s. 26-32Artikel i tidskrift (Refereegranskat)
  • 58.
    Andersson, Åsa
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    B cell repertoire development in normal physiology and autoimmune disease1993Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    The B cell repertoire in the neonatal immune system (IS) is characterised by reactivity towards self-components, including other immunoglobulin (Ig) V-regions. These properties have been suggested to be a requirement for the development of a normal immune system. DNA sequencing of two interacting Ig idiotypes, derived from neonatal, preimmune mice, demonstrated that such idiotypic connectivity is germ- line encoded and devoid of VDJ junctional diversity. The serum levels of the same Ig idiotypes were studied in normal mice and demonstrated that the expression in serum fluctuated over time in a pattern compatible with a complex dynamic system. In contrast, similar analyses in autoimmune mice or humans demonstrated fluctuations in Ig titers that differed significantly from the healthy individuals. These findings suggested that pathological autoimmunity may be associated with fundamental alterations in the dynamics of natural antibody (ab) expression. This was further investigated in the nonobese diabetic (NOD) mouse, an animal model for human Type I diabetes. Suppression of the early B cell development in the NOD mouse prevented the development of diabetes, suggesting a role for B cells/Igs in the development of diabetes in these mice. Furthermore, neonatal injections of polyclonal Ig preparations or single, monoclonal natural abs inhibited disease induction. The prevention of diabetes development by one such natural ab was demonstrated to be dependent on both the dose injected and the timing of administration. Studies of the B cell repertoire development in NOD mice, compared to normal mice, by DNA-sequence analyses of IgVH rearrangements utilising genes from the most D-proximal Vh family, Vh7183, supported the idea of an aberrant B cell repertoire in this mouse model. Thus, the adult NOD mouse retained a neonatal pattern of Vh7183 rearrangements. This pattern could, however, be "normalised" by neonatal injection of a natural antibody, previously demonstrated to prevent the development of T cell dependent autoimmunity in the NOD mouse.

  • 59.
    Andresen, Liis
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Tenson, Tanel
    Hauryliuk, Vasili
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.
    Cationic bactericidal peptide 1018 does not specifically target the stringent response alarmone (p)ppGpp2016Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, artikel-id 36549Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The bacterial stringent response is a key regulator of bacterial virulence, biofilm formation and antibiotic tolerance, and is a promising target for the development of new antibacterial compounds. The intracellular nucleotide (p)ppGpp acts as a messenger orchestrating the stringent response. A synthetic peptide 1018 was recently proposed to specifically disrupt biofilms by inhibiting the stringent response via direct interaction with (p) ppGpp (de la Fuente-Nunez et al. (2014) PLoS Pathogens). We have interrogated the specificity of the proposed molecular mechanism. When inhibition of Pseudomonas aeruginosa planktonic and biofilm growth is tested simultaneously in the same assay, peptides 1018 and the control peptide 8101 generated by an inversion of the amino acid sequence of 1018 are equally potent, and, importantly, do not display a preferential activity against biofilm. 1018 inhibits planktonic growth of Escherichia coli equally efficiently either when the alleged target, (p) ppGpp, is essential (MOPS media lacking amino acid L-valine), or dispensable for growth (MOPS media supplemented with L-valine). Genetic disruption of the genes relA and spoT responsible for (p) ppGpp synthesis moderately sensitizes-rather than protects-E. coli to 1018. We suggest that the antimicrobial activity of 1018 does not rely on specific recognition of the stringent response messenger (p) ppGpp.

  • 60.
    Andresen, Liis
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Varik, Vallo
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.
    Tozawa, Yuzuru
    Jimmy, Steffi
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Lindberg, Stina
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Tenson, Tanel
    Hauryliuk, Vasili
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.
    Auxotrophy-based High Throughput Screening assay for the identification of Bacillus subtilis stringent response inhibitors2016Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, artikel-id 35824Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The stringent response is a central adaptation mechanism that allows bacteria to adjust their growth and metabolism according to environmental conditions. The functionality of the stringent response is crucial for bacterial virulence, survival during host invasion as well as antibiotic resistance and tolerance. Therefore, specific inhibitors of the stringent response hold great promise as molecular tools for disarming and pacifying bacterial pathogens. By taking advantage of the valine amino acid auxotrophy of the Bacillus subtilis stringent response-deficient strain, we have set up a High Throughput Screening assay for the identification of stringent response inhibitors. By screening 17,500 compounds, we have identified a novel class of antibacterials based on the 4-(6-(phenoxy) alkyl)-3,5-dimethyl-1H-pyrazole core. Detailed characterization of the hit compounds as well as two previously identified promising stringent response inhibitors-a ppGpp-mimic nucleotide Relacin and cationic peptide 1018 - showed that neither of the compounds is sufficiently specific, thus motivating future application of our screening assay to larger and more diverse molecular libraries.

  • 61. Annicotte, Jean-Sébastien
    et al.
    Fayard, Elisabeth
    Swift, Galvin H
    Selander, Lars
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Edlund, Helena
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Tanaka, Toshiya
    Kodama, Tatsuhiko
    Schoonjans, Kristina
    Auwerx, Johan
    Pancreatic-duodenal homeobox 1 regulates expression of liver receptor homolog 1 during pancreas development.2003Ingår i: Molecular and Cellular Biology, ISSN 0270-7306, E-ISSN 1098-5549, Vol. 23, nr 19, s. 6713-6124Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Liver receptor homolog 1 (LRH-1) and pancreatic-duodenal homeobox 1 (PDX-1) are coexpressed in the pancreas during mouse embryonic development. Analysis of the regulatory region of the human LRH-1 gene demonstrated the presence of three functional binding sites for PDX-1. Electrophoretic mobility shift assays and chromatin immunoprecipitation analysis showed that PDX-1 bound to the LRH-1 promoter, both in cultured cells in vitro and during pancreatic development in vivo. Retroviral expression of PDX-1 in pancreatic cells induced the transcription of LRH-1, whereas reduced PDX-1 levels by RNA interference attenuated its expression. Consistent with direct regulation of LRH-1 expression by PDX-1, PDX-1(-/-) mice expressed smaller amounts of LRH-1 mRNA in the embryonic pancreas. Taken together, our data indicate that PDX-1 controls LRH-1 expression and identify LRH-1 as a novel downstream target in the PDX-1 regulatory cascade governing pancreatic development, differentiation, and function.

  • 62.
    Antonsson, Åsa
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Regulation of NF-κB by Calmodulin2003Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Cells experience numerous external signals which they must respond to. Such signals arriving at the cell surface are transduced via various signal transduction pathways and often ultimately result in regulation of transcription. NF-κB is a family of transcription factors involved in the regulation of genes important for processes such as immune and inflammatory responses, cell growth, development and cell survival. NF-κB proteins are normally kept inactive in the cytoplasm due to masking of their nuclear localisation signal (NLS) by inhibitory IκB proteins. A large number of stimuli lead to the activation of IκB-kinase (IKK). Active IKK phosphorylates IκB and thereby labels it for ubiquitination and, subsequently, degradation by the proteasome. Liberated NF-κB enters the nucleus, where it takes part in the regulation of its target genes.

    Calmodulin (CaM) is a ubiquitous Ca2+-binding protein which is considered to be the predominant intracellular Ca2+ sensor. CaM plays a major role in the Ca2+-dependent regulation of a wide variety of cellular processes, including transcription. CaM regulates transcription both indirectly through CaM-dependent kinases and phosphatases and directly through interaction with transcription factors.

    CaM was found to bind directly and in a Ca2+-dependent fashion to the two NF-κB family members c-Rel and RelA. The CaM-NF-κB interactions were strongly enhanced by NF-κB activating stimuli and this enhancement was blocked by the addition of IκB, suggesting that c-Rel and RelA can bind CaM after their signal-induced release from IκB. Compared to wild-type c-Rel, CaM binding-deficient mutants were shown to exhibit an increased nuclear accumulation and transcriptional activity on Ca2+-regulated cytokine promoters. The results suggest that CaM can inhibit transport of c-Rel, but not of RelA, to the nucleus and thereby differentially regulate the activation of NF-κB proteins following cell stimulation. CaM was also found to affect NF-κB activity indirectly through the action of a CaM-dependent kinase (CaMK). Studies of the events leading to IκBα phosphorylation revealed that CaM and CaMKII inhibitors blocked phorbol ester induced activation of IKK. Furthermore, CaM and CaMKII inhibitors also blocked T cell receptor/CD3 induced IκBα degradation, and expression of an inhibitor-resistant derivative of the γ isoform of CaMKII caused the inhibitors lose their effect on phorbol ester induced IκBα degradation. Finally, expression of a constitutively active CaMKII resulted in the activation of NF-κB. These results identify CaMKII as a mediator of IKK activation, specifically in response to T cell receptor/CD3 and phorbol ester stimulation.

    In conclusion, this thesis describes the identification of CaM as a dual regulator of NF-κB proteins, acting both directly and indirectly to affect the activity of this family of transcription factors.

  • 63.
    Antonsson, Åsa
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Hughes, Kate
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Edin, Sofia
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Grundström, Thomas
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Regulation of c-Rel Nuclear Localization by Binding of Ca2+/Calmodulin2003Ingår i: Molecular and Cellular Biology, ISSN 0270-7306, E-ISSN 1098-5549, Vol. 23, nr 4, s. 1418-1427Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The NF-κB/Rel family of transcription factors participates in the control of a wide array of genes, including genes involved in embryonic development and regulation of immune, inflammation, and stress responses. In most cells, inhibitory IκB proteins sequester NF-κB/Rel in the cytoplasm. Cellular stimulation results in the degradation of IκB and modification of NF-κB/Rel proteins, allowing NF-κB/Rel to translocate to the nucleus and act on its target genes. Calmodulin (CaM) is a highly conserved, ubiquitously expressed Ca2+ binding protein that serves as a key mediator of intracellular Ca2+ signals. Here we report that two members of the NF-κB/Rel family, c-Rel and RelA, interact directly with Ca2+-loaded CaM. The interaction with CaM is greatly enhanced by cell stimulation, and this enhancement is blocked by addition of IκB. c-Rel and RelA interact with CaM through a similar sequence near the nuclear localization signal. Compared to the wild-type protein, CaM binding-deficient mutants of c-Rel exhibit increases in both nuclear accumulation and transcriptional activity on the interleukin 2 and granulocyte macrophage colony-stimulating factor promoters in the presence of a Ca2+ signal. Conversely, for RelA neither nuclear accumulation nor transcriptional activity on these promoters is increased by mutation of the sequence interacting with CaM. Our results suggest that CaM binds c-Rel and RelA after their release from IκB and can inhibit nuclear import of c-Rel while letting RelA translocate to the nucleus and act on its target genes. CaM can therefore differentially regulate the activation of NF-κB/Rel proteins following stimulation.

  • 64.
    Antti, Henrik
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Fahlgren, Anna
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Näsström, Elin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Kouremenos, Konstantinos
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Sundén-Cullberg, Jonas
    Guo, Yongzhi
    Moritz, Thomas
    Wolf-Watz, Hans
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Johansson, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Infektionssjukdomar.
    Fällman, Maria
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Metabolic profiling for detection of staphylococcus aureus infection and antibiotic resistance2013Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, nr 2, artikel-id e56971Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Due to slow diagnostics, physicians must optimize antibiotic therapies based on clinical evaluation of patients without specific information on causative bacteria. We have investigated metabolomic analysis of blood for the detection of acute bacterial infection and early differentiation between ineffective and effective antibiotic treatment. A vital and timely therapeutic difficulty was thereby addressed: the ability to rapidly detect treatment failures because of antibiotic-resistant bacteria. Methicillin-resistant (MRSA) and methicillin-sensitive (MSSA) were used and for infecting mice, while natural MSSA infection was studied in humans. Samples of bacterial growth media, the blood of infected mice and of humans were analyzed with combined Gas Chromatography/Mass Spectrometry. Multivariate data analysis was used to reveal the metabolic profiles of infection and the responses to different antibiotic treatments. experiments resulted in the detection of 256 putative metabolites and mice infection experiments resulted in the detection of 474 putative metabolites. Importantly, ineffective and effective antibiotic treatments were differentiated already two hours after treatment start in both experimental systems. That is, the ineffective treatment of MRSA using cloxacillin and untreated controls produced one metabolic profile while all effective treatment combinations using cloxacillin or vancomycin for MSSA or MRSA produced another profile. For further evaluation of the concept, blood samples of humans admitted to intensive care with severe sepsis were analyzed. One hundred thirty-three putative metabolites differentiated severe MSSA sepsis (n = 6) from severe sepsis (n = 10) and identified treatment responses over time. Combined analysis of human, , and mice samples identified 25 metabolites indicative of effective treatment of sepsis. Taken together, this study provides a proof of concept of the utility of analyzing metabolite patterns in blood for early differentiation between ineffective and effective antibiotic treatment in acute infections.

  • 65. Arencibia, I
    et al.
    Suárez, N C
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Wolf-Watz, H
    Sundqvist, K G
    Yersinia invasin, a bacterial beta1-integrin ligand, is a potent inducer of lymphocyte motility and migration to collagen type IV and fibronectin.1997Ingår i: Journal of Immunology, ISSN 0022-1767, E-ISSN 1550-6606, Vol. 159, nr 4, s. 1853-9Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Yersinia pseudotuberculosis invasin protein was found to be a potent inducer of pseudopodia formation and chemotactic and haptotactic migration in human T lymphocytes. Checkerboard analysis confirmed that migration was directional. The Yersinia invasin triggered migration of otherwise poorly migratory normal T cells on fibronectin and in particular on collagen type IV, and augmented the migration of leukemic T cell lines on these components. Invasin-induced lymphocyte migration was inhibited by staurosporin that selectively prevented pseudopodia formation but, noteworthy, augmented adhesion. The motogenic and attractant properties of invasin (Inv) were mediated via beta1-integrins, as shown by lack of effect of Inv on the motility of a beta1-integrin-negative lymphoid cell line and inhibition of invasin-induced lymphocyte motility by anti-beta1 Abs. Inv was markedly more effective than the extracellular matrix components fibronectin, collagen type IV, and laminin, which also interact with lymphocyte beta1-integrins, with respect to induction of pseudopodia, chemotaxis, and haptotaxis. Thus, Yersinia invasin is a model ligand for induction of lymphocyte motility via beta1-integrins. The extraordinary capacity of Inv to trigger and guide T lymphocyte motility and potentiate lymphocyte migration to extracellular matrix components may be of pathogenetic significance for the movement of lymphocytes to extraintestinal sites secondary to Yersinia infection.

  • 66. Arend, A
    et al.
    Aunapuu, M
    Masso, R
    Selstam, Gunnar
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Prostaglandins of the E-series inhibit connective tissue proliferation in the liver wound of the rat2005Ingår i: Annals of Anatomy, ISSN 0940-9602, E-ISSN 1618-0402, Vol. 187, nr 1, s. 57-62Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The present study was undertaken to relate wound heating of an internal organ to prostaglandins of the E and F series. A small liver wound was induced by a galvanic cauter via the abdominal route under general anesthesia and prostaglandin E-1, E-2 and F-2 alpha were injected twice daily at a dose of 250 mu g/kg. Proliferation of the connective tissue in the liver wound was estimated morphometrically 6 days after liver wound infliction. Levels of prostaglandins E-2 and F-2 alpha were measured in the liver wound as well as in normal liver tissue from adjacent lobes using radioimmunoassay. The results show that exogenous prostaglandins of the E-series suppress connective tissue proliferation. Three minutes after the last prostaglandin E-2 injection, high prostaglandin concentrations were measured both in the tiver wound and in the liver tissue of the adjacent lobe. Prostaglandin F-2 alpha injections had no effect on wound heating. We believe that the rat thermic liver wound model can be used for different studies on wound heating mechanisms and that prostaglandins of the E-series are involved in wound heating in the specific time period studied.

  • 67. Arend, Andres
    et al.
    Masso, Raivo
    Masso, Marika
    Selstam, Gunnar
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Electron microscope immunocytochemical localization of cyclooxygenase-1 and-2 in pseudopregnant rat corpus luteum during luteolysis2004Ingår i: Prostaglandins & other lipid mediators, ISSN 1098-8823, E-ISSN 2212-196X, Vol. 74, nr 1-4, s. 1-10Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Prostaglandins converted from arachidonic acid by cyclooxygenases play an important regulatory role in regression of the corpus luteum. To reveal luteal distribution of cyclooxygenase isoforms during luteolysis, an electron microscope immunocytochemical study was performed. Cyclooxygenase-1 and -2 were found both in luteal steroid-producing and interstitial cells on days 13, 15 and 18 of the adult pseudopregnant rat. Cyclooxygenase-2 immunolabelling was predominantly seen in non-luteal cells. The two enzymes were localized in similar fashion to the plasma membrane, rough and smooth endoplasmic reticulum, lipid bodies and mitochondria, but differently in the nuclear compartment. Cyclooxygenase-1 labelling was found only in the perinuclear region, while cyclooxygenase-2 was localized to the nuclear envelope, region of condensed heterochromatin as well as at the perimeter of the heterochromatin. Nuclear residence may indicate additional roles for cyclooxygenase-2 in regulating gene expression. Identification of both enzymes on lipid bodies suggests that these inclusions may be involved in luteal prostanoid production.

  • 68. Arts, F. A.
    et al.
    Chand, Damini
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
    Pecquet, C.
    Velghe, A. I.
    Constantinescu, S.
    Hallberg, B.
    Demoulin, J-B
    PDGFRB mutants found in patients with familial infantile myofibromatosis or overgrowth syndrome are oncogenic and sensitive to imatinib2016Ingår i: Oncogene, ISSN 0950-9232, E-ISSN 1476-5594, Vol. 35, nr 25, s. 3239-3248Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Recently, germline and somatic heterozygous mutations in the platelet-derived growth factor receptor beta (PDGFRB) have been associated with familial infantile myofibromatosis (IM), which is characterized by soft tissue tumors, and overgrowth syndrome, a disease that predisposes to cancer. These mutations have not been functionally characterized. In the present study, the activity of three PDGFRB mutants associated with familial IM (R561C, P660T and N666K) and one PDGFRB mutant found in patients with overgrowth syndrome (P584R) was tested in various models. The P660T mutant showed no difference with the wild-type receptor, suggesting that it might represent a polymorphic variant unrelated to the disease. By contrast, the three other mutants were constitutively active and able to transform NIH3T3 and Ba/F3 cells to different extents. In particular, the germline mutant identified in overgrowth syndrome, P584R, was a stronger oncogene than the germline R561C mutant associated with myofibromatosis. The distinct phenotypes associated with these two mutations could be related to this difference of potency. Importantly, all activated mutants were sensitive to tyrosine kinase inhibitors such as imatinib, nilotinib and ponatinib. In conclusion, the PDGFRB mutations previously identified in familial IM and overgrowth syndrome activate the receptor in the absence of ligand, supporting the hypothesis that these mutations cause the diseases. Moreover, imatinib seems to be a promising treatment for patients carrying these mutations. To our knowledge, these are the first confirmed gain-of-function point mutations of PDGFRB in human cancer.

  • 69.
    Aspholm-Hurtig, Marina
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för odontologi, Oral mikrobiologi.
    Dailide, Giedrius
    Lahmann, Martina
    Kalia, Awdhesh
    Ilver, Dag
    Roche, Niamh
    Vikström, Susanne
    Umeå universitet, Medicinska fakulteten, Institutionen för odontologi, Oral mikrobiologi.
    Sjöström, Rolf
    Umeå universitet, Medicinska fakulteten, Institutionen för odontologi, Oral mikrobiologi.
    Lindén, Sara
    Bäckström, Anna
    Umeå universitet, Medicinska fakulteten, Institutionen för odontologi, Oral mikrobiologi.
    Lundberg, Carina
    Umeå universitet, Medicinska fakulteten, Institutionen för odontologi, Oral mikrobiologi.
    Arnqvist, Anna
    Umeå universitet, Medicinska fakulteten, Institutionen för odontologi, Oral mikrobiologi. Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Mahdavi, Jafar
    Umeå universitet, Medicinska fakulteten, Institutionen för odontologi, Oral mikrobiologi.
    Nilsson, Ulf J
    Velapatiño, Billie
    Gilman, Robert H
    Gerhard, Markus
    Alarcon, Teresa
    López-Brea, Manuel
    Nakazawa, Teruko
    Fox, James G
    Correa, Pelayo
    Dominguez-Bello, Maria Gloria
    Perez-Perez, Guillermo I
    Blaser, Martin J
    Normark, Staffan
    Carlstedt, Ingemar
    Oscarson, Stefan
    Teneberg, Susann
    Berg, Douglas E
    Borén, Thomas
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Umeå universitet, Medicinska fakulteten, Institutionen för odontologi, Oral mikrobiologi.
    Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin2004Ingår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 305, nr 5683, s. 519-522Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Adherence by Helicobacter pylori increases the risk of gastric disease. Here, we report that more than 95% of strains that bind fucosylated blood group antigen bind A, B, and O antigens (generalists), whereas 60% of adherent South American Amerindian strains bind blood group O antigens best (specialists). This specialization coincides with the unique predominance of blood group O in these Amerindians. Strains differed about 1500-fold in binding affinities, and diversifying selection was evident in babA sequences. We propose that cycles of selection for increased and decreased bacterial adherence contribute to babA diversity and that these cycles have led to gradual replacement of generalist binding by specialist binding in blood group O-dominant human populations.

  • 70. Atiomo, William
    et al.
    Shafiee, Mohamad Nasir
    Chapman, Caroline
    Metzler, Veronika M.
    Abouzeid, Jad
    Latif, Ayşe
    Chadwick, Amy
    Kitson, Sarah
    Sivalingam, Vanitha N.
    Stratford, Ian J.
    Rutland, Catrin S.
    Persson, Jenny L.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Clinical Research Center, Lund University, Malmö, Sweden.
    Ødum, Niels
    Fuentes-Utrilla, Pablo
    Jeyapalan, Jennie N.
    Heery, David M.
    Crosbie, Emma J.
    Mongan, Nigel P.
    Expression of NAD(P)H quinone dehydrogenase 1 (NQO1) is increased in the endometrium of women with endometrial cancer and women with polycystic ovary syndrome2017Ingår i: Clinical Endocrinology, ISSN 0300-0664, E-ISSN 1365-2265, Vol. 87, nr 5, s. 557-565Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Objective: Women with a prior history of polycystic ovary syndrome (PCOS) have an increased risk of endometrial cancer (EC). Aim: To investigate whether the endometrium of women with PCOS possesses gene expression changes similar to those found in EC. Design and Methods: Patients with EC, PCOS and control women unaffected by either PCOS or EC were recruited into a cross-sectional study at the Nottingham University Hospital, UK. For RNA sequencing, representative individual endometrial biopsies were obtained from women with EC, PCOS and a woman unaffected by PCOS or EC. Expression of a subset of differentially expressed genes identified by RNA sequencing, including NAD(P)H quinone dehydrogenase 1 (NQO1), was validated by quantitative reverse transcriptase PCR validation (n = 76) and in the cancer genome atlas UCEC (uterine corpus endometrioid carcinoma) RNA sequencing data set (n = 381). The expression of NQO1 was validated by immunohistochemistry in EC samples from a separate cohort (n = 91) comprised of consecutive patients who underwent hysterectomy at St Mary's Hospital, Manchester, between 2011 and 2013. A further 6 postmenopausal women with histologically normal endometrium who underwent hysterectomy for genital prolapse were also included. Informed consent and local ethics approval were obtained for the study. Results: We show for the first that NQO1 expression is significantly increased in the endometrium of women with PCOS and EC. Immunohistochemistry confirms significantly increased NQO1 protein expression in EC relative to nonmalignant endometrial tissue (P < .0001). Conclusions: The results obtained here support a previously unrecognized molecular link between PCOS and EC involving NQO1.

  • 71.
    Atkinson, Gemma C.
    et al.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia .
    Kuzmenko, Anton
    University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia & Department of Molecular Biology, Faculty of Biology, Moscow State University, Moscow, Russia .
    Chicherin, Ivan
    Department of Molecular Biology, Faculty of Biology, Moscow State University, Moscow, Russia.
    Soosaar, Axel
    University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia .
    Tenson, Tanel
    University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia .
    Carr, Martin
    School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK.
    Kamenski, Piotr
    Department of Molecular Biology, Faculty of Biology, Moscow State University, Moscow, Russia .
    Hauryliuk, Vasili
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia .
    An evolutionary ratchet leading to loss of elongation factors in eukaryotes2014Ingår i: BMC Evolutionary Biology, ISSN 1471-2148, E-ISSN 1471-2148, Vol. 14, s. 35-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: The GTPase eEF1A is the eukaryotic factor responsible for the essential, universal function of aminoacyl-tRNA delivery to the ribosome. Surprisingly, eEF1A is not universally present in eukaryotes, being replaced by the paralog EFL independently in multiple lineages. The driving force behind this unusually frequent replacement is poorly understood. Results: Through sequence searching of genomic and EST databases, we find a striking association of eEF1A replacement by EFL and loss of eEF1A's guanine exchange factor, eEF1Ba, suggesting that EFL is able to spontaneously recharge with GTP. Sequence conservation and homology modeling analyses indicate several sequence regions that may be responsible for EFL's lack of requirement for eEF1Ba. Conclusions: We propose that the unusual pattern of eEF1A, eEF1Ba and EFL presence and absence can be explained by a ratchet-like process: if either eEF1A or eEF1Ba diverges beyond functionality in the presence of EFL, the system is unable to return to the ancestral, eEF1A:eEFBa-driven state.

  • 72.
    Atkinson, Gemma Catherine
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia.
    The evolutionary and functional diversity of classical and lesser-known cytoplasmic and organellar translational GTPases across the tree of life2015Ingår i: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 16, artikel-id 78Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: The ribosome translates mRNA to protein with the aid of a number of accessory protein factors. Translational GTPases (trGTPases) are an integral part of the 'core set' of essential translational factors, and are some of the most conserved proteins across life. This study takes advantage of the wealth of available genomic data, along with novel functional information that has come to light for a number of trGTPases to address the full evolutionary and functional diversity of this superfamily across all domains of life. 

    Results: Through sensitive sequence searching combined with phylogenetic analysis, 57 distinct subfamilies of trGTPases are identified: 14 bacterial, 7 archaeal and 35 eukaryotic (of which 21 are known or predicted to be organellar). The results uncover the functional evolution of trGTPases from before the last common ancestor of life on earth to the current day. 

    Conclusions: While some trGTPases are universal, others are limited to certain taxa, suggesting lineage-specific translational control mechanisms that exist on a base of core factors. These lineage-specific features may give organisms the ability to tune their translation machinery to respond to their environment. Only a fraction of the diversity of the trGTPase superfamily has been subjected to experimental analyses; this comprehensive classification brings to light novel and overlooked translation factors that are worthy of further investigation.

  • 73.
    Aung, Kyaw Min
    et al.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Sjöström, Annika E
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    von Pawel-Rammingen, Ulrich
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Riesbeck, Kristian
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Wai, Sun Nyunt
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Naturally Occurring IgG Antibodies Provide Innate Protection against Vibrio cholerae Bacteremia by Recognition of the Outer Membrane Protein U2016Ingår i: Journal of Innate Immunity, ISSN 1662-811X, E-ISSN 1662-8128, Vol. 8, nr 3, s. 269-283Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cholera epidemics are caused by Vibrio cholerae serogroups O1 and O139, whereas strains collectively known as non-O1/non-O139 V. cholerae are found in cases of extraintestinal infections and bacteremia. The mechanisms and factors influencing the occurrence of bacteremia and survival of V. cholerae in normal human serum have remained unclear. We found that naturally occurring IgG recognizing V. cholerae outer membrane protein U (OmpU) mediates a serum-killing effect in a complement C1q-dependent manner. Moreover, outer membrane vesicles (OMVs) containing OmpU caused enhanced survival of highly serum-sensitive classical V. cholerae in a dose-dependent manner. OMVs from wild-type and ompU mutant V. cholerae thereby provided a novel means to verify by extracellular transcomplementation the involvement of OmpU. Our data conclusively indicate that loss, or reduced expression, of OmpU imparts resistance to V. cholerae towards serum killing. We propose that the difference in OmpU protein levels is a plausible reason for differences in serum resistance and the ability to cause bacteremia observed among V. cholerae biotypes. Our findings provide a new perspective on how naturally occurring antibodies, perhaps induced by members of the microbiome, may play a role in the recognition of pathogens and the provocation of innate immune defense against bacteremia.

  • 74.
    Avican, Kemal
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Persistent infection by Yersinia pseudotuberculosis2015Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Enteropathogenic Yersinia species can infect many mammalian organs such as the small intestine, cecum, Peyer’s patches, liver, spleen, and lung and cause diseases that resemble a typhoid-like syndrome, as seen for other enteropathogens. We found that sublethal infection doses of Y. pseudotuberculosis gave rise to asymptomatic persistent infection in mice and identified the cecal lymphoid follicles as the primary site for colonization during persistence. Persistent Y. pseudotuberculosis is localized in the dome area, often in inflammatory lesions, as foci or as single cells, and also in neutrophil exudates in the cecal lumen. This new mouse model for bacterial persistence in cecum has potential as an investigative tool for deeper understanding of bacterial adaptation and host immune defense mechanisms during persistent infection. Here, we investigated the nature of the persistent infection established by Y. pseudotuberculosis in mouse cecal tissue using in vivo RNA-seq of bacteria during early and persistent stages of infection. Comparative analysis of the bacterial transcriptomes revealed that Y. pseudotuberculosis undergoes transcriptional reprogramming with drastic down-regulation of T3SS virulence genes during persistence in the cecum. At the persistent stage, the expression pattern in many respects resembles the pattern seen in vitro at 26°C. Genes that are up-regulated during persistence are genes involved in anaerobiosis, chemotaxis, and protection against oxidative and acidic stress, which indicates the influence of different environmental cues. We found that the Crp/CsrA/RovA regulatory cascades influence the pattern of bacterial gene expression during persistence. Furthermore, we show that ArcA, Fnr, FrdA, WrbA, RovA, and RfaH play critical roles in persistence. An extended investigation of the transcriptional regulator rfaH employing mouse infection studies, phenotypic characterizations, and RNA-seq transcriptomics analyses indicated that this gene product contributes to establishment of infection and confirmed that it regulates O-antigen biosynthesis genes in Y. pseudotuberculosis. The RNA-seq results also suggest that rfaH has a relatively global effect. Furthermore, we also found that the dynamics of the cecal tissue organization and microbial composition shows changes during different stages of the infection. Taken together, based on our findings, we speculate that this enteropathogen initiates infection by using its virulence factors in meeting the innate immune response in the cecal tissue. Later on, these factors lead to dysbiosis in the local microbiota and altered tissue organization. At later stages of the infection, the pathogen adapts to the environment in the cecum by reprogramming its transcriptome from a highly virulent mode to a more environmentally adaptable mode for survival and shedding. The in vivo transcriptomic analyses for essential genes during infections present strong candidates for novel targets for antimicrobials.

  • 75.
    Avican, Kemal
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Fahlgren, Anna
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Huss, Mikael
    Heroven, Ann Kathrin
    Beckstette, Michael
    Dersch, Petra
    Fällman, Maria
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Reprogramming of Yersinia from Virulent to Persistent Mode Revealed by Complex In Vivo RNA-seq Analysis2015Ingår i: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 11, nr 1, artikel-id e1004600Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We recently found that Yersinia pseudotuberculosis can be used as a model of persistent bacterial infections. We performed in vivo RNA-seq of bacteria in small cecal tissue biopsies at early and persistent stages of infection to determine strategies associated with persistence. Comprehensive analysis of mixed RNA populations from infected tissues revealed that Y. pseudotuberculosis undergoes transcriptional reprogramming with drastic down-regulation of T3SS virulence genes during persistence when the pathogen resides within the cecum. At the persistent stage, the expression pattern in many respects resembles the pattern seen in vitro at 26oC, with for example, up-regulation of flagellar genes and invA. These findings are expected to have impact on future rationales to identify suitable bacterial targets for new antibiotics. Other genes that are up-regulated during persistence are genes involved in anaerobiosis, chemotaxis, and protection against oxidative and acidic stress, which indicates the influence of different environmental cues. We found that the Crp/CsrA/RovA regulatory cascades influence the pattern of bacterial gene expression during persistence. Furthermore, arcA, fnr, frdA, and wrbA play critical roles in persistence. Our findings suggest a model for the life cycle of this enteropathogen with reprogramming from a virulent to an adapted phenotype capable of persisting and spreading by fecal shedding.

  • 76.
    Avican, Kemal
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Nilsson, K
    Fällman, Maria
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Transcriptomic characterization of RfaH linked to persistent infection of Yersinia pseudotuberculosisManuskript (preprint) (Övrigt vetenskapligt)
  • 77.
    Avican, Ummehan
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Avican, Kemal
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Fällman, Maria
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Forsberg, Åke
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Transcriptomic and phenotypic analysis of sufI and tatC mutants of Yersinia pseudotuberculosisManuskript (preprint) (Övrigt vetenskapligt)
  • 78.
    Avican, Ummehan
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Beckstette, Michael
    Heroven, Ann Kathrin
    Lavander, Moa
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Dersch, Petra
    Forsberg, Åke
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Transcriptomic and phenotypic analysis reveals new functions for the Tat pathway in Yersinia pseudotuberculosis2016Ingår i: Journal of Bacteriology, ISSN 0021-9193, E-ISSN 1098-5530, Vol. 198, nr 20, s. 2876-2886Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Twin-arginine translocation (Tat) system mediates secretion of folded proteins that in bacteria, plants and archaea are identified via an N-terminal signal peptide. Tat systems are associated with virulence in many bacterial pathogens and our previous studies revealed that Tat deficient Yersinia pseudotuberculosis was severely attenuated for virulence. Aiming to identify Tat-dependent pathways and phenotypes of relevance for in vivo infection, we analysed the global transcriptome of parental and ∆tatC mutant strains of Y. pseudotuberculosis during exponential and stationary growth at 26oC and 37oC. The most significant changes in the transcriptome of the ∆tatC mutant were seen at 26oC during stationary phase growth and these included the altered expression of genes related to virulence, stress responses and metabolism. Subsequent phenotypic analysis based on these transcriptome changes revealed several novel Tat-dependent phenotypes including decreased YadA expression, impaired growth under iron-limiting and high copper conditions as well as acidic pH and SDS. Several functionally related Tat substrates were also verified to contribute to these phenotypes. Interestingly, the phenotypic defects observed in the Tat-deficient strain were generally more pronounced than in mutants lacking the Tat substrate predicted to contribute to that specific function. Altogether, this provides new insight into the impact of Tat deficiency on in vivo fitness and survival/replication of Y. pseudotuberculosis during infection.

  • 79.
    Avican, Ummehan
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Doruk, Tugrul
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Östberg, Yngve
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Fahlgren, Anna
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Forsberg, Åke
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    The Tat substrate SufI is critical for the ability of Yersinia pseudotuberculosis to cause systemic infection2017Ingår i: Infection and Immunity, ISSN 0019-9567, E-ISSN 1098-5522, Vol. 85, nr 4, artikel-id e00867-16Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The twin arginine translocation (Tat) system targets folded proteins across the inner membrane and is crucial for virulence in many important humanpathogenic bacteria. Tat has been shown to be required for the virulence of Yersinia pseudotuberculosis, and we recently showed that the system is critical for different virulence-related stress responses as well as for iron uptake. In this study, we wanted to address the role of the Tat substrates in in vivo virulence. Therefore, 22 genes encoding potential Tat substrates were mutated, and each mutant was evaluated in a competitive oral infection of mice. Interestingly, a.sufI mutant was essentially as attenuated for virulence as the Tat-deficient strain. We also verified that SufI was Tat dependent for membrane/periplasmic localization in Y. pseudotuberculosis. In vivo bioluminescent imaging of orally infected mice revealed that both the.sufI and Delta tatC mutants were able to colonize the cecum and Peyer's patches (PPs) and could spread to the mesenteric lymph nodes (MLNs). Importantly, at this point, neither the Delta tatC mutant nor the Delta sufI mutant was able to spread systemically, and they were gradually cleared. Immunostaining of MLNs revealed that both the Delta tatC and Delta sufI mutants were unable to spread from the initial infection foci and appeared to be contained by neutrophils, while wild-type bacteria readily spread to establish multiple foci from day 3 postinfection. Our results show that SufI alone is required for the establishment of systemic infection and is the major cause of the attenuation of the Delta tatC mutant.

  • 80. Axelsson-Olsson, Diana
    et al.
    Waldenström, Jonas
    Broman, Tina
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinsk fakultet, Klinisk mikrobiologi, Infektionssjukdomar.
    Olsen, Björn
    Umeå universitet, Medicinsk fakultet, Klinisk mikrobiologi, Infektionssjukdomar.
    Holmberg, Martin
    Protozoan Acanthamoeba polyphaga as a potential reservoir for Campylobacter jejuni.2005Ingår i: Applied and Environmental Microbiology, ISSN 0099-2240, Vol. 71, nr 2, s. 987-92Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We showed by a laboratory experiment that four different Campylobacter jejuni strains are able to infect the protozoan Acanthamoeba polyphaga. C. jejuni cells survived for longer periods when cocultured with amoebae than when grown in culture alone. The infecting C. jejuni cells aggregated in amoebic vacuoles, in which they were seen to be actively moving. Furthermore, a resuscitation of bacterial cultures that were previously negative in culturability tests was observed after reinoculation into fresh amoeba cultures. After spontaneous rupture of the amoebae, C. jejuni could be detected by microscopy and culturability tests. Our results indicate that amoebae may serve as a nonvertebrate reservoir for C. jejuni in the environment.

  • 81. Bahnan, Wael
    et al.
    Boettner, Douglas R.
    Westermark, Linda
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Fällman, Maria
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Schesser, Kurt
    Pathogenic Yersinia Promotes Its Survival by Creating an Acidic Fluid-Accessible Compartment on the Macrophage Surface2015Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 10, nr 8, artikel-id e0133298Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Microbial pathogens and host immune cells each initiate events following their interaction in an attempt to drive the outcome to their respective advantage. Here we show that the bacterial pathogen Yersinia pseudotuberculosis sustains itself on the surface of a macrophage by forming acidic fluid-accessible compartments that are partially bounded by the host cell plasma membrane. These Yersinia-containing acidic compartments (YACs) are bereft of the early endosomal marker EEA1 and the lysosomal antigen LAMP1 and readily form on primary macrophages as well as macrophage-like cell lines. YAC formation requires the presence of the Yersinia virulence plasmid which encodes a type III secretion system. Unexpectedly, we found that the initial formation of YACs did not require translocation of the type III effectors into the host cell cytosol; however, the duration of YACs was markedly greater in infections using translocation-competent Y. pseudotuberculosis strains as well as strains expressing the effector YopJ. Furthermore, it was in this translocation- and YopJ-dependent phase of infection that the acidic environment was critical for Y. pseudotuberculosis survival during its interaction with macrophages. Our findings indicate that during its extracellular phase of infection Y. pseudotuberculosis initiates and then, by a separate mechanism, stabilizes the formation of a highly intricate structure on the surface of the macrophage that is disengaged from the endocytic pathway.

  • 82.
    Bailey, Leslie
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Infection biology of Chlamydia pneumoniae2008Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    There are two main human pathogens in the family of Chlamydiaceae. Different serovars of Chlamydia trachomatis cause sexually-transmitted disease and eye infections whereas C. pneumoniae (TWAR) is a common cause of community-acquired respiratory infection. Chlamydia species are obligate, intracellular bacteria sharing a unique developmental cycle that occurs within a protected vacuole termed an inclusion. These microorganisms can be distinguished by two different forms: the infectious, metabolically inert elementary body (EB) and the reproducing non-infectious form, termed the reticulate body (RB). The cycle is terminated when re-differentiation of RBs back to infectious EBs occurs. Chlamydia possesses a type III secretion system (T3SS) essential for delivery of effector proteins into the host for host-cell interactions. This virulence system has been systematically characterized in several mammalian pathogens. Due to lack of a tractable genetic system for Chlamydia species, we have employed chemical genetics as a strategy to investigate molecular aspects of the T3SS. We have identified that the T3S-inhibitors INP0010 and INP0400 block the developmental cycle and interfere with secretion of T3S effector proteins in C. pneumoniae and C. trachomatis, without any cytotoxic effect. We have further shown that INP0010 decreases initiation of transcription in C. pneumoniae during the early mid-developmental cycle as demonstrated by a novel calculation, useful for measurement of transcription initiation in any intracellular pathogen. The mechanism regulating the signal(s) for primary as well as terminal differentiation of RBs has not been defined in Chlamydia. We show using T3S-inhibitors that INP0010 targets the T3SS and thereby arrests RB proliferation as well as RB to EB re-differentiation of C. pneumoniae as where INP0400 targets the T3SS and provokes a bacterial dissociation from the inclusion membrane presumed to mimic the natural occurrence of terminal differentiation. The effect of INP0010 on iron-responsive genes indicates a role for T3S in iron acquisition. Accordingly, our results suggest the possibility that C. pneumoniae acquires iron via the intracellular trafficking pathway of endocytosed transferrin. Moreover, we have for the first time presented data showing generalized bone loss from C. pneumoniae infection in mice. The infection was associated with increased levels of the bone resorptive cytokines IL-6 and IL-1beta. In addition, an increased sub-population of T-cells expressed RANKL during infection. Additionally, C. pneumoniae established an infection in a human osteoblast cell line in vitro with a similar cytokine profile as seen in vivo, supporting a causal linkage. Collectively, these data may indicate a previously unknown pathological role of C. pneumoniae in generalized bone loss.

  • 83.
    Bailey, Leslie
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Engström, Patrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Nordström, Anna
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Rehabiliteringsmedicin. Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap, Idrottsmedicin.
    Bergström, Sven
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Waldenström, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Medicin.
    Nordström, Peter
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Geriatrik.
    Chlamydia pneumoniae infection results in generalized bone loss in mice2008Ingår i: Microbes and infection, ISSN 1286-4579, E-ISSN 1769-714X, Vol. 10, nr 10-11, s. 1175-1181Artikel i tidskrift (Refereegranskat)
  • 84.
    Bailey, Leslie
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Engström, Patrik
    Önskog, Tomas
    Bergström, Sven
    Johansson, Jörgen
    The T3SS-inhibitor INP0010 decreases transcription initiation and modulates mRNA stability during early development in Chlamydia pneumoniaeManuskript (preprint) (Övrigt vetenskapligt)
  • 85.
    Bailey, Leslie
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Gylfe, Åsa
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Sundin, Charlotta
    Muschiol, Sandra
    Elofsson, Mikael
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Nordström, Peter
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Medicin.
    Henriques-Normark, Birgitta
    Lugert, Raimond
    Waldenström, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Medicin.
    Wolf-Watz, Hans
    Bergström, Sven
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Small molecule inhibitors of type III secretion in Yersinia block the Chlamydia pneumoniae infection cycle2007Ingår i: FEBS Letters, ISSN 0014-5793, E-ISSN 1873-3468, Vol. 581, nr 4, s. 587-595Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Intracellular parasitism by Chlamydiales is a complex process involving transmission of metabolically inactive particles that differentiate, replicate, and re-differentiate within the host cell. A type three secretion system (T3SS) has been implicated in this process. We have here identified small molecules of a chemical class of acylated hydrazones of salicylaldehydes that specifically blocks the T3SS of Chlamydia. These compounds also affect the developmental cycle showing that the T3SS has a pivotal role in the pathogenesis of Chlamydia. Our results suggest a previously unexplored avenue for development of novel anti-chlamydial drugs.

  • 86.
    Bailey, Leslie
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Muschiol, Sandra
    Engström, Patrik
    Nordström, Peter
    Henriques-Normark, Birgitta
    Waldenström, Anders
    Gylfe, Åsa
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Elofsson, Mikael
    Wolf-Watz, Hans
    Bergström, Sven
    Small molecule inhibitors reveal a role for the Chlamydia type III secretion system in iron acquisitionManuskript (Övrigt vetenskapligt)
  • 87.
    Balagopal, Vidya
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Fluch, Lydia
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Nissan, Tracy
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Ways and means of eukaryotic mRNA decay2012Ingår i: Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, ISSN 1874-9399, Vol. 1819, nr 6, s. 593-603Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Messenger RNA degradation is an important point of control for gene expression. Genome-wide studies on mRNA stability have demonstrated its importance in adaptation and stress response. Most of the key players in mRNA decay appear to have been identified. The study of these proteins brings insight into the mechanism of general and specific targeting of transcripts for degradation. Recruitment and assembly of mRNP complexes enhance and bring specificity to mRNA decay. mRNP complexes can form larger structures that have been found to be ubiquitous in nature. Discovery of P-Bodies, an archetype of this sort of aggregates, has generated interest in the question of where mRNA degrades. This is currently an open question under extensive investigation. This review will discuss in detail the recent developments in the regulation of mRNA decay focusing on yeast as a model system. 

  • 88. Balonova, Lucie
    et al.
    Mann, Benjamin F
    Cerveny, Lukas
    Alley, William R, Jr
    Chovancova, Eva
    Forslund, Anna-Lena
    Salomonsson, Emelie N
    Forsberg, Åke
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Damborsky, Jiri
    Novotny, Milos V
    Hernychova, Lenka
    Stulik, Jiri
    Characterization of protein glycosylation in Francisella tularensis subsp holarctica2012Ingår i: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 11, nr 7Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    FTH_0069 is a previously uncharacterized strongly immunoreactive protein that has been proposed to be a novel virulence factor in Francisella tularensis. Here, the glycan structure modifying two C-terminal peptides of FTH_0069 was identified utilizing high resolution, high mass accuracy mass spectrometry, combined with in-source CID tandem MS experiments. The glycan observed at m/z 1156 was determined to be a hexasaccharide, consisting of two hexoses, three N-acetylhexosamines, and an unknown monosaccharide containing a phosphate group. The monosaccharide sequence of the glycan is tentatively proposed as X-P-HexNAc-HexNAc-Hex-Hex-HexNAc, where X denotes the unknown monosaccharide. The glycan is identical to that of DsbA glycoprotein, as well as to one of the multiple glycan structures modifying the type IV pilin PilA, suggesting a common biosynthetic pathway for the protein modification. Here, we demonstrate that the glycosylation of FTH_0069, DsbA, and PilA was affected in an isogenic mutant with a disrupted wbtDEF gene cluster encoding O-antigen synthesis and in a mutant with a deleted pglA gene encoding pilin oligosaccharyltransferase PglA. Based on our findings, we propose that PglA is involved in both pilin and general F. tularensis protein glycosylation, and we further suggest an inter-relationship between the O-antigen and the glycan synthesis in the early steps in their biosynthetic pathways. Molecular & Cellular Proteomics 11: 10.1074/mcp.M111.015016, 1-12, 2012.

  • 89. Balsalobre, Carlos
    et al.
    Johansson, Jörgen
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Uhlin, Bernt Eric
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Cyclic AMP-dependent osmoregulation of crp gene expression in Escherichia coli.2006Ingår i: J Bacteriol, ISSN 0021-9193, Vol. 188, nr 16, s. 5935-44Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have found that the cyclic AMP (cAMP) receptor protein (CRP)-cAMP regulatory complex in Escherichia coli is subject to osmoregulation at the level of crp gene expression. This osmoregulation was lost in a cya mutant strain but could be restored by external addition of cAMP, suggesting that the intracellular level of cAMP is a key factor in the osmoregulation of CRP. The ability of the cell to maintain optimal CRP activity was essential for the growth and survival of the bacteria under low-osmolarity conditions as shown by studies with different crp mutant alleles. A suppressor mutant with a novel amino acid substitution (L124R) in CRP showed restored growth at low osmolarity. CRP(L124R) was not activated by cAMP and was shown to be dominant negative over the wild type. Our findings suggest that the fine-tuning of the CRP activity may be critical for bacterial viability and adaptability to changing osmotic conditions.

  • 90.
    Balsalobre, Carlos
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Silván, José Manuel
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Berglund, Stina
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Mizunoe, Yoshimitsu
    Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Nyunt Wai, Sun
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Release of the type I secreted α-haemolysin via outer membrane vesicles from Escherichia coli2006Ingår i: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 59, nr 1, s. 99-112Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The α-haemolysin is an important virulence factor commonly expressed by extraintestinal pathogenic Escherichia coli. The secretion of the α-haemolysin is mediated by the type I secretion system and the toxin reaches the extracellular space without the formation of periplasmic intermediates presumably in a soluble form. Surprisingly, we found that a fraction of this type I secreted protein is located within outer membrane vesicles (OMVs) that are released by the bacteria. The α-haemolysin appeared very tightly associated with the OMVs as judged by dissociation assays and proteinase susceptibility tests. The α-haemolysin in OMVs was cytotoxically active and caused lysis of red blood cells. The OMVs containing the α-haemolysin were distinct from the OMVs not containing α-haemolysin, showing a lower density. Furthermore, they differed in protein composition and one component of the type I secretion system, the TolC protein, was found in the lower density vesicles. Studies of natural isolates of E. coli demonstrated that the localization of α-haemolysin in OMVs is a common feature among haemolytic strains. We propose an alternative pathway for the transport of the type I secreted α-haemolysin from the bacteria to the host cells during bacterial infections.

  • 91.
    Bamyaci, Sarp
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Multiple functions of YopN in the Yersinia pseudotuberculosis type III secretion system: from regulation to in vivo infection2019Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    The type 3 secretion systems (T3SSs) are virulence mechanisms used by various Gram-negative bacteria to overcome the host immunity. They are often target-cell contact induced and activated. Activation results in targeting of virulence effector substrates into host cells. One class of secreted substrates, translocators, are required for the intracellular targeting of the second class, the virulence effectors, into host target cells. T3SSs are mainly regulated at 2 levels; a shift from environmental to host temperature results in low level induction of the system whereas target cell contact further induces and activates the system. In the Yersinia T3SS, YopN, one of the secreted substrates, is involved in the latter level of activation. Under non-inducing conditions, YopN complexes with TyeA, SycN and YscB and this complex suppresses the T3SS via an unknown mechanism. When the system is induced, the complex is believed to dissociate and YopN is secreted resulting in the activation of the system. Earlier studies indicated that YopN is not only secreted but also translocated into target cells in a T3SS dependent manner. TyeA, SycN and YscB bind to the C-terminal and N-terminal YopN respectively but so far the central region (CR) of YopN has not been characterized. In this study we have focused on the function of the YopN central region.

    We therefore generated in-frame deletion mutants within the CR of YopN. One of these deletion mutants, aa 76-181, showed decreased early translocation of both YopE and YopH into infected host cells and also failed to efficiently block phagocytosis by macrophages. However, the YopNΔ76-181 protein was expressed at lower levels compared to wt YopN and also showed a slightly deregulated phenotype when expressed from its native promoter and were as a consequence not possible to use in in vivo infection studies.

    Therefore, we generated mutants that disrupted a putative coiled coil domain located at the very N-terminal of CR. Similar to YopNΔ76-181, these substitution mutants were affected in the early translocation of effector proteins. Importantly, they were as stable as wt YopN when expressed from the native promoter. One of these mutants was unable to cause systemic infection in mice indicating that YopN indeed also has a direct role in virulence and is required for establishment of systemic infection in vivo.

  • 92.
    Bamyaci, Sarp
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Ekestubbe, Sofie
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Nordfelth, Roland
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Ertmann, Saskia
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Edgren, Tomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Forsberg, Åke
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    YopN is required for efficient translocation and virulence in Yersinia pseudotuberculosisManuskript (preprint) (Övrigt vetenskapligt)
  • 93.
    Bamyaci, Sarp
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Ekestubbe, Sofie
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Nordfelth, Roland
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Erttmann, Saskia F.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Edgren, Tomas
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Forsberg, Åke
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    YopN Is Required for Efficient Effector Translocation and Virulence in Yersinia pseudotuberculosis2018Ingår i: Infection and Immunity, ISSN 0019-9567, E-ISSN 1098-5522, Vol. 86, nr 8, artikel-id e00957-17Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Type III secretion systems (T3SSs) are used by various Gram-negative pathogens to subvert the host defense by a host cell contact-dependent mechanism to secrete and translocate virulence effectors. While the effectors differ between pathogens and determine the pathogenic life style, the overall mechanism of secretion and translocation is conserved. T3SSs are regulated at multiple levels, and some secreted substrates have also been shown to function in regulation. In Yersinia, one of the substrates, YopN, has long been known to function in the host cell contact-dependent regulation of the T3SS. Prior to contact, through its interaction with TyeA, YopN blocks secretion. Upon cell contact, TyeA dissociates from YopN, which is secreted by the T3SS, resulting in the induction of the system. YopN has also been shown to be translocated into target cells by a T3SS-dependent mechanism. However, no intracellular function has yet been assigned to YopN. The regulatory role of YopN involves the N-terminal and C-terminal parts, while less is known about the role of the central region of YopN. Here, we constructed different in-frame deletion mutants within the central region. The deletion of amino acids 76 to 181 resulted in an unaltered regulation of Yop expression and secretion but triggered reduced YopE and YopH translocation within the first 30 min after infection. As a consequence, this deletion mutant lost its ability to block phagocytosis by macrophages. In conclusion, we were able to differentiate the function of YopN in translocation and virulence from its function in regulation.

  • 94.
    Bamyaci, Sarp
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Nordfelth, R
    Forsberg, Å
    Kinetics of Type III secretion in Yersinia and sub-cellular localization of the Yops under non-inducing conditionsManuskript (preprint) (Övrigt vetenskapligt)
  • 95.
    Bamyaci, Sarp
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Nordfelth, Roland
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Forsberg, Åke
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Identification of specific sequence motif of YopN of Yersinia pseudotuberculosis required for systemic infection2019Ingår i: Virulence, ISSN 2150-5594, E-ISSN 2150-5608, Vol. 10, nr 1, s. 10-25Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Type III secretion systems (T3SSs) are tightly regulated key virulence mechanisms shared by many Gram-negative pathogens. YopN, one of the substrates, is also crucial in regulation of expression, secretion and activation of the T3SS of pathogenic Yersinia species. Interestingly, YopN itself is also targeted into host cells but so far no activity or direct role for YopN inside host cells has been described. Recently, we were able show that the central region of YopN is required for efficient translocation of YopH and YopE into host cells. This was also shown to impact the ability of Yersinia to block phagocytosis. One difficulty in studying YopN is to generate mutants that are not impaired in regulation of the T3SS. In this study we extended our previous work and were able to generate specific mutants within the central region of YopN. These mutants were predicted to be crucial for formation of a putative coiled-coil domain (CCD). Similar to the previously described deletion mutant of the central region, these mutants were all impaired in translocation of YopE and YopH. Interestingly, these YopN variants were not translocated into host cells. Importantly, when these mutants were introduced in cis on the virulence plasmid, they retained full regulatory function of T3SS expression and secretion. This allowed us to evaluate one of the mutants, yopNGAGA, in the systemic mouse infection model. Using in vivo imaging technology we could verify that the mutant was also attenuated in vivo and highly impaired to establish systemic infection.

  • 96.
    Barcena-Uribarri, Ivan
    et al.
    Universität Würzburg, Germany.
    Thein, Marcus
    Universität Würzburg and Jacobs University Bremen, Germany.
    Maier, Elke
    Universität Würzburg, Germany.
    Bonde, Mari
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Bergström, Sven
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Benz, Roland
    Universität Würzburg, Germany.
    Use of Nonelectrolytes Reveals the Channel Size and Oligomeric Constitution of the Borrelia burgdorferi P66 Porin2013Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, nr 11, s. e78272-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the Lyme disease spirochete Borrelia burgdorferi, the outer membrane protein P66 is capable of pore formation with an atypical high single-channel conductance of 11 nS in 1 M KCl, which suggested that it could have a larger diameter than 'normal' Gram-negative bacterial porins. We studied the diameter of the P66 channel by analyzing its single-channel conductance in black lipid bilayers in the presence of different nonelectrolytes with known hydrodynamic radii. We calculated the filling of the channel with these nonelectrolytes and the results suggested that nonelectrolytes (NEs) with hydrodynamic radii of 0.34 nm or smaller pass through the pore, whereas neutral molecules with greater radii only partially filled the channel or were not able to enter it at all. The diameter of the entrance of the P66 channel was determined to be <= 1.9 nm and the channel has a central constriction of about 0.8 nm. The size of the channel appeared to be symmetrical as judged from one-sidedness of addition of NEs. Furthermore, the P66-induced membrane conductance could be blocked by 80-90% by the addition of the nonelectrolytes PEG 400, PEG 600 and maltohexaose to the aqueous phase in the low millimolar range. The analysis of the power density spectra of ion current through P66 after blockage with these NEs revealed no chemical reaction responsible for channel block. Interestingly, the blockage of the single-channel conductance of P66 by these NEs occurred in about eight subconductance states, indicating that the P66 channel could be an oligomer of about eight individual channels. The organization of P66 as a possible octamer was confirmed by Blue Native PAGE and immunoblot analysis, which both demonstrated that P66 forms a complex with a mass of approximately 460 kDa. Two dimension SDS PAGE revealed that P66 is the only polypeptide in the complex.

  • 97. Bartoletti, Alessandro
    et al.
    Medini, Paolo
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Berardi, Nicoletta
    Maffei, Lamberto
    Environmental enrichment prevents effects of dark-rearing in the rat visual cortex2004Ingår i: Nature Neuroscience, ISSN 1097-6256, E-ISSN 1546-1726, Vol. 7, nr 3, s. 215-216Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Environmental enrichment potentiates neural plasticity, enhancing acquisition and consolidation of memory traces. In the sensory cortices, after cortical circuit maturation and sensory function acquisition are completed, neural plasticity declines and the critical period 'closes'. In the visual cortex, this process can be prevented by dark-rearing, and here we show that environmental enrichment can promote physiological maturation and consolidation of visual cortical connections in dark-reared rats, leading to critical period closure.

  • 98. Beljantseva, Jelena
    et al.
    Kudrin, Pavel
    Andresen, Liis
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Shingler, Vicky
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Atkinson, Gemma C.
    Tenson, Tanel
    Hauryliuk, Vasili
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Institute of Technology, University of Tartu, 50411 Tartu, Estonia.
    Negative allosteric regulation of Enterococcus faecalis small alarmone synthetase RelQ by single-stranded RNA2017Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, nr 14, s. 3726-3731Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The alarmone nucleotides guanosine pentaphosphate (pppGpp) and tetraphosphate (ppGpp), collectively referred to as (p)ppGpp, are key regulators of bacterial growth, stress adaptation, pathogenicity, and antibiotic tolerance. We show that the tetrameric small alarmone synthetase (SAS) RelQ from the Gram-positive pathogen Enterococcus faecalis is a sequence-specific RNA-binding protein. RelQ's enzymatic and RNA binding activities are subject to intricate allosteric regulation. (p)ppGpp synthesis is potently inhibited by the binding of single-stranded RNA. Conversely, RelQ's enzymatic activity destabilizes the RelQ: RNA complex. pppGpp, an allosteric activator of the enzyme, counteracts the effect of RNA. Tetramerization of RelQ is essential for this regulatory mechanism, because both RNA binding and enzymatic activity are abolished by deletion of the SAS-specific C-terminal helix 5 alpha. The interplay of pppGpp binding, (p)ppGpp synthesis, and RNA binding unites two archetypal regulatory paradigms within a single protein. The mechanism is likely a prevalent but previously unappreciated regulatory switch used by the widely distributed bacterial SAS enzymes.

  • 99. Beljantseva, Jelena
    et al.
    Kudrin, Pavel
    Jimmy, Steffi
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Ehn, Marcel
    Pohl, Radek
    Varik, Vallo
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). 1University of Tartu, Institute of Technology, Tartu, Estonia.
    Tozawa, Yuzuru
    Shingler, Victoria
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Tenson, Tanel
    Rejman, Dominik
    Hauryliuk, Vasili
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). 1University of Tartu, Institute of Technology, Tartu, Estonia.
    Molecular mutagenesis of ppGpp: turning a RelA activator into an inhibitor2017Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, artikel-id 41839Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The alarmone nucleotide (p) ppGpp is a key regulator of bacterial metabolism, growth, stress tolerance and virulence, making (p) ppGpp-mediated signaling a promising target for development of antibacterials. Although ppGpp itself is an activator of the ribosome-associated ppGpp synthetase RelA, several ppGpp mimics have been developed as RelA inhibitors. However promising, the currently available ppGpp mimics are relatively inefficient, with IC50 in the sub-mM range. In an attempt to identify a potent and specific inhibitor of RelA capable of abrogating (p) ppGpp production in live bacterial cells, we have tested a targeted nucleotide library using a biochemical test system comprised of purified Escherichia coli components. While none of the compounds fulfilled this aim, the screen has yielded several potentially useful molecular tools for biochemical and structural work.

  • 100.
    Berg, A. H.
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Thomas, P.
    Olsson, P-E.
    Characterization of the 17,20β-dihydroxy-4-pregnen-3-one membrane receptor in Arctic char (Salvelinus alpinus) ovaries and its upregulation during gonadotropin induction of oocyte maturationManuskript (Övrigt vetenskapligt)
1234567 51 - 100 av 1060
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf