umu.sePublications
Change search
Refine search result
1234567 1 - 50 of 1818
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Frisan, Teresa
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden.
    Nagy, Noemi
    Chioureas, Dimitrios
    Terol, Marie
    Grasso, Francesca
    Masucci, Maria G.
    A bacterial genotoxin causes virus reactivation and genomic instability in Epstein-Barr virus infected epithelial cells pointing to a role of co-infection in viral oncogenesis2019In: International Journal of Cancer, ISSN 0020-7136, E-ISSN 1097-0215, Vol. 144, no 1, p. 98-109Article in journal (Refereed)
    Abstract [en]

    We have addressed the role of bacterial co-infection in viral oncogenesis using as model Epstein-Barr virus (EBV), a human herpesvirus that causes lymphoid malignancies and epithelial cancers. Infection of EBV carrying epithelial cells with the common oral pathogenic Gram-negative bacterium Aggregatibacter actinomycetemcomitans (Aa) triggered reactivation of the productive virus cycle. Using isogenic Aa strains that differ in the production of the cytolethal distending toxin (CDT) and purified catalytically active or inactive toxin, we found that the CDT acts via induction of DNA double strand breaks and activation of the Ataxia Telangectasia Mutated (ATM) kinase. Exposure of EBV-negative epithelial cells to the virus in the presence of sub-lethal doses of CDT was accompanied by the accumulation of latently infected cells exhibiting multiple signs of genomic instability. These findings illustrate a scenario where co-infection with certain bacterial species may favor the establishment of a microenvironment conducive to the EBV-induced malignant transformation of epithelial cells.

  • 2. Schmidt, Tobias T.
    et al.
    Sharma, Sushma
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Reyes, Gloria X.
    Gries, Kerstin
    Gross, Maike
    Zhao, Boyu
    Yuan, Jui-Hung
    Wade, Rebecca
    Chabes, Andrei
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Hombauer, Hans
    A genetic screen pinpoints ribonucleotide reductase residues that sustain dNTP homeostasis and specifies a highly mutagenic type of dNTP imbalance2019In: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 47, no 1, p. 237-252Article in journal (Refereed)
    Abstract [en]

    The balance and the overall concentration of intracellular deoxyribonucleoside triphosphates (dNTPs) are important determinants of faithful DNA replication. Despite the established fact that changes in dNTP pools negatively influence DNA replication fidelity, it is not clear why certain dNTP pool alterations are more mutagenic than others. As intracellular dNTP pools are mainly controlled by ribonucleotide reductase (RNR), and given the limited number of eukaryotic RNR mutations characterized so far, we screened for RNR1 mutations causing mutator phenotypes in Saccharomyces cerevisiae. We identified 24 rnr1 mutant alleles resulting in diverse mutator phenotypes linked in most cases to imbalanced dNTPs. Among the identified rnr1 alleles the strongest mutators presented a dNTP imbalance in which three out of the four dNTPs were elevated (dCTP, dTTP and dGTP), particularly if dGTP levels were highly increased. These rnr1 alleles caused growth defects/lethality in DNA replication fidelity-compromised backgrounds, and caused strong mutator phenotypes even in the presence of functional DNA polymerases and mismatch repair. In summary, this study pinpoints key residues that contribute to allosteric regulation of RNR’s overall activity or substrate specificity. We propose a model that distinguishes between different dNTP pool alterations and provides a mechanistic explanation why certain dNTP imbalances are particularly detrimental.

  • 3. Xing, Xuanxuan
    et al.
    Kane, Daniel P.
    Bulock, Chelsea R.
    Moore, Elizabeth A.
    Sharma, Sushma
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Chabes, Andrei
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Shcherbakova, Polina V.
    A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme2019In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, article id 374Article in journal (Refereed)
    Abstract [en]

    Alterations in the exonuclease domain of DNA polymerase ε (Polε) cause ultramutated tumors. Severe mutator effects of the most common variant, Polε-P286R, modeled in yeast suggested that its pathogenicity involves yet unknown mechanisms beyond simple proofreading deficiency. We show that, despite producing a catastrophic amount of replication errors in vivo, the yeast Polε-P286R analog retains partial exonuclease activity and is more accurate than exonuclease-dead Polε. The major consequence of the arginine substitution is a dramatically increased DNA polymerase activity. This is manifested as a superior ability to copy synthetic and natural templates, extend mismatched primer termini, and bypass secondary DNA structures. We discuss a model wherein the cancer-associated substitution limits access of the 3'-terminus to the exonuclease site and promotes binding at the polymerase site, thus stimulating polymerization. We propose that the ultramutator effect results from increased polymerase activity amplifying the contribution of Polε errors to the genomic mutation rate.

  • 4.
    Zlatkov, Nikola
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Uhlin, Bernt Eric
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Absence of Global Stress Regulation in Escherichia coli Promotes Pathoadaptation and Novel c-di-GMP-dependent Metabolic Capability2019In: Scientific Reports, ISSN 2045-2322, Vol. 9, article id 2600Article in journal (Refereed)
    Abstract [en]

    athoadaptive mutations linked to c-di-GMP signalling were investigated in neonatal meningitis-causing Escherichia coli (NMEC). The results indicated that NMEC strains deficient in RpoS (the global stress regulator) maintained remarkably low levels of c-di-GMP, a major bacterial sessility-motility switch. Deletion of ycgG2, shown here to encode a YcgG allozyme with c-di-GMP phosphodiesterase activity, and the restoration of RpoS led to a decrease in S-fimbriae, robustly produced in artificial urine, hinting that the urinary tract could serve as a habitat for NMEC. We showed that NMEC were skilled in aerobic citrate utilization in the presence of glucose, a property that normally does not exist in E. coli. Our data suggest that this metabolic novelty is a property of extraintestinal pathogenic E. coli since we reconstituted this ability in E. coli UTI89 (a cystitis isolate) via deactivation rpoS; additionally, a set of pyelonephritis E. coli isolates were shown here to aerobically use citrate in the presence of glucose. We found that the main reason for this metabolic capability is RpoS inactivation leading to the production of the citrate transporter CitT, exploited by NMEC for ferric citrate uptake dependent on YcgG2 (an allozyme with c-di-GMP phosphodiesterase activity).

  • 5.
    Taheri, Nayyer
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Fällman, Maria
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Wai, Sun Nyunt
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Fahlgren, Anna
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Accumulation of virulence-associated proteins in Campylobacter jejuni Outer Membrane Vesicles at human body temperature2019In: Journal of Proteomics, ISSN 1874-3919, E-ISSN 1876-7737, Vol. 195, p. 33-40Article in journal (Refereed)
    Abstract [en]

    Campylobacter jejuni is the major cause of bacterial gastroenteritis in humans. In contrast, colonization in avian hosts is asymptomatic. Body temperature differs between human (37 °C) and avian (42 °C) hosts, and bacterial growth in 37 °C is therefore a potential cue for higher virulence properties during human infection. The proteome of the bacteria was previously shown to be altered by temperature. Here we investigated whether temperature has an effect on the C. jejuni outer membrane vesicle (OMV) proteome, as OMVs are considered to be bacterial vehicles for protein delivery and might play a role during infection. OMVs isolated from C. jejuni strain 81-176 grown at 37 °C and 42 °C were analyzed by LC-ESI-MS/MS. 181 proteins were detected in both sample groups, one protein was exclusively present, and three were absent in OMVs from 37 °C. Of the 181 proteins, 59 were differentially expressed; 30 proteins were detected with higher abundance, and 29 proteins with lower abundance at 37 °C. Among the more highly abundant proteins, significantly more proteins were predicted to be associated with virulence. These data show that temperature has an impact on the property of the OMVs, and this might affect the outcome of colonization/infection by C. jejuni in different hosts.

  • 6. Howell, Matthew
    et al.
    Aliashkevich, Alena
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Sundararajan, Kousik
    Daniel, Jeremy J.
    Lariviere, Patrick J.
    Goley, Erin D.
    Cava, Felipe
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Brown, Pamela J. B.
    Agrobacterium tumefaciens divisome proteins regulate the transition from polar growth to cell division2019In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 111, no 4, p. 1074-1092Article in journal (Refereed)
    Abstract [en]

    The mechanisms that restrict peptidoglycan biosynthesis to the pole during elongation and re-direct peptidoglycan biosynthesis to mid-cell during cell division in polar-growing Alphaproteobacteria are largely unknown. Here, we explore the role of early division proteins of Agrobacterium tumefaciens including three FtsZ homologs, FtsA and FtsW in the transition from polar growth to mid-cell growth and ultimately cell division. Although two of the three FtsZ homologs localize to mid-cell, exhibit GTPase activity and form co-polymers, only one, FtsZ(AT), is required for cell division. We find that FtsZ(AT) is required not only for constriction and cell separation, but also for initiation of peptidoglycan synthesis at mid-cell and cessation of polar peptidoglycan biosynthesis. Depletion of FtsZ(AT) in A. tumefaciens causes a striking phenotype: cells are extensively branched and accumulate growth active poles through tip splitting events. When cell division is blocked at a later stage by depletion of FtsA or FtsW, polar growth is terminated and ectopic growth poles emerge from mid-cell. Overall, this work suggests that A. tumefaciens FtsZ makes distinct contributions to the regulation of polar growth and cell division.

  • 7.
    Ahmad, Irfan
    et al.
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan.
    Karah, Nabil
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Nadeem, Aftab
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Wai, Sun Nyunt
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Uhlin, Bernt Eric
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Analysis of colony phase variation switch in Acinetobacter baumannii clinical isolates2019In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 14, no 1, article id e0210082Article in journal (Refereed)
    Abstract [en]

    Reversible switching between opaque and translucent colony formation is a novel feature of Acinetobacter baumannii that has been associated with variations in the cell morphology, surface motility, biofilm formation, antibiotic resistance and virulence. Here, we assessed a number of phenotypic alterations related to colony switching in A. baumannii clinical isolates belonging to different multi-locus sequence types. Our findings demonstrated that these phenotypic alterations were mostly strain-specific. In general, the translucent subpopulations of A. baumannii produced more dense biofilms, were more piliated, and released larger amounts of outer membrane vesicles (OMVs). In addition, the translucent subpopulations caused reduced fertility of Caenorhabditis elegans. When assessed for effects on the immune response in RAW 264.7 macrophages, the OMVs isolated from opaque subpopulations of A. baumannii appeared to be more immunogenic than the OMVs from the translucent form. However, also the OMVs from the translucent subpopulations had the potential to evoke an immune response. Therefore, we suggest that OMVs may be considered for development of new immunotherapeutic treatments against A. baumannii infections.

  • 8.
    Dorafshan, Eshagh
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Kahn, Tatyana G.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Glotov, Alexander
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Savitsky, Mikhail
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Walther, Matthias
    Reuter, Gunter
    Schwartz, Yuri B.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Ash1 counteracts Polycomb repression independent of histone H3 lysine 36 methylation2019In: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 20, no 4, article id e46762Article in journal (Refereed)
    Abstract [en]

    Polycomb repression is critical for metazoan development. Equally important but less studied is the Trithorax system, which safeguards Polycomb target genes from the repression in cells where they have to remain active. It was proposed that the Trithorax system acts via methylation of histone H3 at lysine 4 and lysine 36 (H3K36), thereby inhibiting histone methyltransferase activity of the Polycomb complexes. Here we test this hypothesis by asking whether the Trithorax group protein Ash1 requires H3K36 methylation to counteract Polycomb repression. We show that Ash1 is the only Drosophila H3K36-specific methyltransferase necessary to prevent excessive Polycomb repression of homeotic genes. Unexpectedly, our experiments reveal no correlation between the extent of H3K36 methylation and the resistance to Polycomb repression. Furthermore, we find that complete substitution of the zygotic histone H3 with a variant in which lysine 36 is replaced by arginine does not cause excessive repression of homeotic genes. Our results suggest that the model, where the Trithorax group proteins methylate histone H3 to inhibit the histone methyltransferase activity of the Polycomb complexes, needs revision.

  • 9. Flentie, Kelly
    et al.
    Harrison, Gregory A.
    Tükenmez, Hasan
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Livny, Jonathan
    Good, James A. D.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Sarkar, Souvik
    Zhu, Dennis X.
    Kinsella, Rachel L.
    Weiss, Leslie A.
    Solomon, Samantha D.
    Schene, Miranda E.
    Hansen, Mette R.
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Cairns, Andrew G.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Kulén, Martina
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Wixe, Torbjörn
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Lindgren, Anders E. G.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110.
    Bengtsson, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Krishnan, K. Syam
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Hultgren, Scott J.
    Larsson, Christer
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Stallings, Christina L.
    Chemical disarming of isoniazid resistance in Mycobacterium tuberculosis2019In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 116, no 21, p. 10510-10517Article in journal (Refereed)
    Abstract [en]

    Mycobacterium tuberculosis (Mtb) killed more people in 2017 than any other single infectious agent. This dangerous pathogen is able to withstand stresses imposed by the immune system and tolerate exposure to antibiotics, resulting in persistent infection. The global tuberculosis (TB) epidemic has been exacerbated by the emergence of mutant strains of Mtb that are resistant to frontline antibiotics. Thus, both phenotypic drug tolerance and genetic drug resistance are major obstacles to successful TB therapy. Using a chemical approach to identify compounds that block stress and drug tolerance, as opposed to traditional screens for compounds that kill Mtb, we identified a small molecule, C10, that blocks tolerance to oxidative stress, acid stress, and the frontline antibiotic isoniazid (INH). In addition, we found that C10 prevents the selection for INH-resistant mutants and restores INH sensitivity in otherwise INH-resistant Mtb strains harboring mutations in the katG gene, which encodes the enzyme that converts the prodrug INH to its active form. Through mechanistic studies, we discovered that C10 inhibits Mtb respiration, revealing a link between respiration homeostasis and INH sensitivity. Therefore, by using C10 to dissect Mtb persistence, we discovered that INH resistance is not absolute and can be reversed.

  • 10.
    Kumar, Keshav
    et al.
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Cava, Felipe
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Chromatographic analysis of peptidoglycan samples with the aid of a chemometric technique: introducing a novel analytical procedure to classify bacterial cell wall collection2019In: Analytical Methods, ISSN 1759-9660, E-ISSN 1759-9679, Vol. 11, no 12, p. 1671-1679Article in journal (Refereed)
    Abstract [en]

    The technical development of liquid chromatography has provided the necessary sensitivity to characterise peptidoglycan samples. However, the analysis of large numbers of complex chromatographic data sets without the aid of a proper chemometric technique is a laborious task, carrying a high risk of losing important biochemical information. The present work describes the development of a simple analytical procedure using self-organising map (SOM) analysis to analyse the large number of complex chromatographic data sets from bacterial peptidoglycan samples. SOM analysis essentially maps the samples to a hexagonal sheet based on their compositional similarity, and thus provides an approach to classify the bacterial cell wall collection in an unsupervised manner. The utility of the proposed approach was successfully validated by analysing peptidoglycan samples belonging to the Alphaproteobacterium class. The classification results achieved with SOM analysis were found to correlate well with their relative similarity in peptidoglycan compositions. In summary, the SOM analysis-based analytical procedure is shown to be useful towards automatising the analyses of chromatographic data sets of peptidoglycan samples from bacterial collections.

  • 11. Bernardo-Garcia, Noelia
    et al.
    Sánchez-Murcia, Pedro A.
    Espaillat, Akbar
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Martínez-Caballero, Siseth
    Cava, Felipe
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Hermoso, Juan A.
    Gago, Federico
    Cold-induced aldimine bond cleavage by Tris in Bacillus subtilis alanine racemase2019In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 17, no 17, p. 4350-4358Article in journal (Refereed)
    Abstract [en]

    Pyridoxal 5'-phosphate (PLP) is a versatile cofactor involved in a large variety of enzymatic processes. Most of PLP-catalysed reactions, such as those of alanine racemases (AlaRs), present a common resting state in which the PLP is covalently bound to an active-site lysine to form an internal aldimine. The crystal structure of BsAlaR grown in the presence of Tris lacks this covalent linkage and the PLP cofactor appears deformylated. However, loss of activity in a Tris buffer only occurred after the solution was frozen prior to carrying out the enzymatic assay. This evidence strongly suggests that Tris can access the active site at subzero temperatures and behave as an alternate racemase substrate leading to mechanism-based enzyme inactivation, a hypothesis that is supported by additional X-ray structures and theoretical results from QM/ MM calculations. Taken together, our findings highlight a possibly underappreciated role for a common buffer component widely used in biochemical and biophysical experiments.

  • 12. Cavanagh, Jorunn Pauline
    et al.
    Pain, Maria
    Askarian, Fatemeh
    Bruun, Jack-Ansgar
    Urbarova, Ilona
    Wai, Sun Nyunt
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Schrnidt, Frank
    Johannessen, Mona
    Comparative exoproteome profiling of an invasive and a commensal Staphylococcus haemolyticus isolate2019In: Journal of Proteomics, ISSN 1874-3919, E-ISSN 1876-7737, Vol. 197, p. 106-114Article in journal (Refereed)
    Abstract [en]

    Staphylococcus haemolyticus is a skin commensal emerging as an opportunistic pathogen. Nosocomial isolates of S. haemolyticus are the most antibiotic resistant members of the coagulase negative staphylococci (CoNS), but information about other S. haemolyticus virulence factors is scarce. Bacterial membrane vesicles (MVs) are one mediator of virulence by enabling secretion and long distance delivery of bacterial effector molecules while protecting the cargo from proteolytic degradation from the environment. We wanted to determine if the MV protein cargo of S. haemolyticus is strain specific and enriched in certain MV associated proteins compared to the totalsecretome.

    The present study shows that both clinical and commensal S. haemolyticus isolates produce membrane vesicles. The MV cargo of both strains was enriched in proteins involved in adhesion and acquisition of iron. The MV cargo of the clinical strain was further enriched in antimicrobial resistance proteins.

    Data are available via ProteomeXchange with identifier PXD010389.

    Biological significance: Clinical isolates of Staphylococcus haemolyticus are usually multidrug resistant, their main virulence factor is formation of biofilms, both factors leading to infections that are difficult to treat. We show that both clinical and commensal S. haemolyticusisolates produce membrane vesicles. Identification of staphylococcal membrane vesicles can potentially be used in novel approaches to combat staphylococcal infections, such as development of vaccines.

  • 13.
    Tükenmez, Hasan
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Edström, Isabel
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Kalsum, Sadaf
    Braian, Clara
    Ummanni, Ramesh
    Lindberg, Stina
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Chemical Biology Consortium Sweden (CBCS).
    Sundin, Charlotta
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Lerm, Maria
    Elofsson, Mikael
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Larsson, Christer
    Corticosteroids protect infected cells against mycobacterial killing in vitro2019In: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 511, no 1, p. 117-121Article in journal (Refereed)
    Abstract [en]

    The effect of corticosteroids on human physiology is complex and their use in tuberculosis patients remains controversial. In a high-throughput screening approach designed to discover virulence inhibitors, several corticosteroids were found to prevent cytolysis of fibroblasts infected with mycobacteria. Further experiments with Mycobacterium tuberculosis showed anti-cytolytic activity in the 10 nM range, but no effect on bacterial growth or survival in the absence of host cells at 20 mu M. The results from a panel of corticosteroids with various affinities to the glucocorticoid- and mineralocorticoid receptors indicate that the inhibition of cytolysis most likely is mediated through the glucocorticoid receptor. Using live-imaging of M. tuberculosis-infected human monocyte-derived macrophages, we also show that corticosteroids to some extent control intracellular bacteria. In vitro systems with reduced complexity are to further study and understand the interactions between bacterial infection, immune defense and cell signaling. (C) 2019 The Authors. Published by Elsevier Inc.

  • 14.
    Muthu, Magesh
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Nordström, Anders
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Current Status and Future Prospects of Clinically Exploiting Cancer-specific Metabolism: Why Is Tumor Metabolism Not More Extensively Translated into Clinical Targets and Biomarkers?2019In: International Journal of Molecular Sciences, ISSN 1422-0067, E-ISSN 1422-0067, Vol. 20, no 6, article id 1385Article, review/survey (Refereed)
    Abstract [en]

    Tumor cells exhibit a specialized metabolism supporting their superior ability for rapid proliferation, migration, and apoptotic evasion. It is reasonable to assume that the specific metabolic needs of the tumor cells can offer an array of therapeutic windows as pharmacological disturbance may derail the biochemical mechanisms necessary for maintaining the tumor characteristics, while being less important for normally proliferating cells. In addition, the specialized metabolism may leave a unique metabolic signature which could be used clinically for diagnostic or prognostic purposes. Quantitative global metabolic profiling (metabolomics) has evolved over the last two decades. However, despite the technology's present ability to measure 1000s of endogenous metabolites in various clinical or biological specimens, there are essentially no examples of metabolomics investigations being translated into actual utility in the cancer clinic. This review investigates the current efforts of using metabolomics as a tool for translation of tumor metabolism into the clinic and further seeks to outline paths for increasing the momentum of using tumor metabolism as a biomarker and drug target opportunity.

  • 15.
    Seibt, Henrik
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Deciphering control of Mechano-Transcription Activators of σ54-RNA polymerase2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    To survive and proliferate, bacteria have to respond to a plethora of fluctuating signals within their habitats. Transcriptional control is one crucial entry point for such signal-responsive adaption responses. In this thesis I present new insights into the signal-responsive control of two specific transcriptional regulators that belong to a specialized class of mechano-transcriptional regulators. These regulators employ ATP-hydrolysis to engage and remodel σ54-RNA polymerase, which allows transcriptional initiation from the promoters they control. In the first part of my thesis I present findings on DmpR – the obligate activator of genes involved in (methyl)phenol catabolism by Pseudomonas putida. DmpR is a sensory-regulator that can only transition to its active multimeric form upon binding a phenolic compound and ATP. Previous work has established that binding of phenolic effectors by the N-terminal domain of DmpR relieves inter-domain repression of its central ATPase domain and further that a structured inter-domain linker between the phenolic- and ATP-binding domains is involved in coupling these processes. However, the mechanism underlying this coupling remained enigmatic. Here I present evidence that a tyrosine residue of the inter-domain linker (Y233) serves as a gatekeeper to constrain ATP-hydrolysis and phenolic-responsive transcriptional activation by DmpR. A model is presented in which binding of phenolics relocates Y233 from the ATP-binding site to synchronise signal-reception with multimerisation to provide appropriate sensitivity of the transcriptional response. Given that Y233 counterparts are present in many ligand-responsive mechano-transcriptional regulators, the model is likely to be pertinent for numerous members of this family. The finding that an alanine substitution of Y233 enhances transcriptional responses adds a new approach to manipulating the sensitivity of this class of proteins and thereby generate hyper-sensitive detectors of aromatic pollutants for use in safe guarding the environment.

    The second part of my thesis concerns VCA0117 – a master regulator of the type VI contractile nanomachinery of Vibrio cholerae, which it utilizes to introduce toxic proteins into both bacterial and eukaryotic cells. These type VI-mediated properties enable V. cholerae to establish infections and to thrive in niches co-occupied by predators and competing bacteria. VCA0117 is strictly required for functionality of the type VI system through its role in controlling production of a key type VI structural protein called Hcp, which is encoded within two small s54-dependent operons. This regulatory role is conserved in both pandemic and non-pandemic V. cholerae strains. However, while some strains come pre-equipped with a functional system, others do not, and require specific growth conditions of low temperature and high osmolarity for type VI expression. Within this work, integration of these regulatory growth signals was traced to the activity of the promoter controlling a large operon in which many components of the machinery and VCA0117 is itself encoded. This in turn elevates the levels of VCA0117, which is all that is required to overcome the need for the specialized growth conditions of low temperature and/or high osmolarity. A model is presented in which signal integration via the activity of the large operon promoter to elevate levels of VCA0117 ultimately dictates a sufficient supply of the missing Hcp component required for completion of a functional type VI machine. Repercussions of the proposed quantity-based regulatory circuit of VCA0117 for generating bacterial sub-populations that are differentially “fit” for different environmental eventualities are discussed.

    The full text will be freely available from 2019-09-01 10:45
  • 16. Zhang, Hanqing
    et al.
    Söderholm, Niklas
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Sandblad, Linda
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Wiklund, Krister
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Andersson, Magnus
    Umeå University, Faculty of Science and Technology, Department of Physics.
    DSEG: A dynamic image segmentation program to extract backbone patterns for filamentous bacteria and hyphae structures2019In: Microscopy and Microanalysis, ISSN 1431-9276, E-ISSN 1435-8115Article in journal (Refereed)
    Abstract [en]

    Analysis of numerous filamentous structures in an image is often limited by the ability of the algorithms to accurately segment complex structures or structures within a dense population. It is even more problematic if these structures continuously grow when recording a time-series of images. To overcome these issues we present DSeg; an image analysis program designed to process time-series image data as well as single images to segment filamentous structures. The program includes a robust binary level-set algorithm modified to use size constraints, edge intensity, and past information. We verify our algorithms using synthetic data, differential interference contrast images of filamentous prokaryotes, and transmission electron microscopy images of bacterial adhesion fimbriae. DSeg includes automatic segmentation, tools for analysis, drift correction, and outputs statistical data such as persistence length, growth rate, and growth direction. The program is available at https://sourceforge.net/projects/dseg-software

  • 17.
    Francis, Matthew S
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Auerbuch, Victoria
    Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States.
    Editorial: The Pathogenic Yersiniae–Advances in the Understanding of Physiology and Virulence, Second Edition2019In: Frontiers in Cellular and Infection Microbiology, E-ISSN 2235-2988, Vol. 9, p. 1-5, article id 119Article in journal (Refereed)
    Abstract [en]

    Of the 18 known Yersinia species, Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica are pathogenic to humans and animals and are widely characterized. The zoonotic obligate pathogen Y. pestis is the causal agent of plague, a systemic disease that is usually fatal if left untreated (Zietz and Dunkelberg, 2004; Zhou et al., 2006). Free-living Y. enterocolitica and Y. pseudotuberculosis are the agents of yersiniosis, a rarely systemic gastrointestinal disease (Galindo et al., 2011). The remaining species are mostly harmless to humans, although Y. ruckeri is an enteric fish pathogen affecting mainly salmonids, while a few others display toxicity toward insects (Sulakvelidze, 2000; Tobback et al., 2007; Fuchs et al., 2008; Chen et al., 2010). At the forefront of Yersinia research are studies of classical microbiology, pathogenesis, protein secretion, niche adaptation, and regulation of gene expression. In pursuit of these endeavors, new frontiers are being forged on waves of methodological and technological innovation. In this second edition of the special research topic on the pathogenic Yersiniae is a compilation of reviews and research articles that summarize current knowledge and future research directions in the Yersinia pathophysiology field.

  • 18. Murphy, Shannon G.
    et al.
    Alvarez, Laura
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Adams, Myfanwy C.
    Liu, Shuning
    Chappie, Joshua S.
    Cava, Felipe
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Dorr, Tobias
    Endopeptidase Regulation as a Novel Function of the Zur-Dependent Zinc Starvation Response2019In: mBio, ISSN 2161-2129, E-ISSN 2150-7511, Vol. 10, no 1, article id e02620-18Article in journal (Refereed)
    Abstract [en]

    The cell wall is a strong, yet flexible, meshwork of peptidoglycan (PG) that gives a bacterium structural integrity. To accommodate a growing cell, the wall is remodeled by both PG synthesis and degradation. Vibrio cholerae encodes a group of three nearly identical zinc-dependent endopeptidases (EPs) that are predicted to hydrolyze PG to facilitate cell growth. Two of these (ShyA and ShyC) are conditionally essential housekeeping EPs, while the third (ShyB) is not expressed under standard laboratory conditions. To investigate the role of ShyB, we conducted a transposon screen to identify mutations that activate shyB transcription. We found that shyB is induced as part of the Zur-mediated zinc starvation response, a mode of regulation not previously reported for cell wall lytic enzymes. In vivo, ShyB alone was sufficient to sustain cell growth in low-zinc environments. In vitro, ShyB retained its D, D-endopeptidase activity against purified sacculi in the presence of the metal chelator EDTA at concentrations that inhibit ShyA and ShyC. This insensitivity to metal chelation is likely what enables ShyB to substitute for other EPs during zinc starvation. Our survey of transcriptomic data from diverse bacteria identified other candidate Zur-regulated EPs, suggesting that this adaptation to zinc starvation is employed by other Gram-negative bacteria. IMPORTANCE Bacteria encode a variety of adaptations that enable them to survive during zinc starvation, a condition which is encountered both in natural environments and inside the human host. In Vibrio cholerae, the causative agent of the diarrheal disease cholera, we have identified a novel member of this zinc starvation response, a cell wall hydrolase that retains function and is conditionally essential for cell growth in low-zinc environments. Other Gram-negative bacteria contain homologs that appear to be under similar regulatory control. These findings are significant because they represent, to our knowledge, the first evidence that zinc homeostasis influences cell wall turnover. Anti-infective therapies commonly target the bacterial cell wall; therefore, an improved understanding of how the cell wall adapts to host-induced zinc starvation could lead to new antibiotic development. Such therapeutic interventions are required to combat the rising threat of drug-resistant infections.

  • 19.
    Shingler, Vicky
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Experimental evolution of novel regulatory activities in response to hydrocarbons and related chemicals2019In: Aerobic utililization of hydrocarbons, oils and Lipids. Handbook of hydrocarbon and lipid microbiology / [ed] Fernando Rojo, Cham: Springer, 2019, p. 737-749Chapter in book (Refereed)
    Abstract [en]

    Bacterial transcriptional regulatory proteins that control catabolism of hydrocarbons and related chemicals have evolved (or are actively evolving) toward specifically detecting compounds that signal the presence of growth substrates. Laboratory evolution of the chemical-binding and response properties of sensory regulators has been achieved by a number of different techniques to generate novel derivatives with desired properties. Such manipulated and selected regulatory proteins are increasingly used in artificial genetic circuitry for improved biodegradation systems, biosensor construction, and in assembling regulatory cascades for synthetic biology within a wide range of biotechnological applications.

  • 20. Hsu, Yen-Pang
    et al.
    Hall, Edward
    Booher, Garrett
    Murphy, Brennan
    Radkov, Atanas D.
    Yablonowski, Jacob
    Mulcahey, Caitlyn
    Alvarez, Laura
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Cava, Felipe
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Brun, Yves, V
    Kuru, Erkin
    VanNieuwenhze, Michael S.
    Fluorogenic D-amino acids enable real-time monitoring of peptidoglycan biosynthesis and high-throughput transpeptidation assays2019In: Nature Chemistry, ISSN 1755-4330, E-ISSN 1755-4349, Vol. 11, no 4, p. 335-341Article in journal (Refereed)
    Abstract [en]

    Peptidoglycan is an essential cell wall component that maintains the morphology and viability of nearly all bacteria. Its biosynthesis requires periplasmic transpeptidation reactions, which construct peptide crosslinkages between polysaccharide chains to endow mechanical strength. However, tracking the transpeptidation reaction in vivo and in vitro is challenging, mainly due to the lack of efficient, biocompatible probes. Here, we report the design, synthesis and application of rotor-fluorogenic D-amino acids (RfDAAs), enabling real-time, continuous tracking of transpeptidation reactions. These probes allow peptidoglycan biosynthesis to be monitored in real time by visualizing transpeptidase reactions in live cells, as well as real-time activity assays of D,D- and L,D-transpeptidases and sortases in vitro. The unique ability of RfDAAs to become fluorescent when incorporated into peptidoglycan provides a powerful new tool to study peptidoglycan biosynthesis with high temporal resolution and prospectively enable high-throughput screening for inhibitors of peptidoglycan biosynthesis.

  • 21.
    Dwibedi, Chinmay Kumar
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Swedish Defence Research Agency.
    Francisella tularensis: persistence, dissemination and source attribution: a theoretical and computational approach2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The bacterium Francisella tularensis causing tularemia in humans and other mammals displays little genetic diversity among genomes across temporal and spatial scales. F. tularensis infects humans with an extremely low infectious dose and causes natural seasonal tularemia outbreaks. During the Cold War, this bacterium was developed as a biological weapon.

    In paper I, we aimed at investigating the genetic diversity of F. tularensis over space and time and were especially interested in the influence of spatial dispersal on the genetic diversity. By analyses of single-nucleotide polymorphisms (SNPs) among 205 F. tularensis genomes, we found that tularemia had moved from East to West over the European continent by dispersal patterns characterized by multiple long-range dispersal events. Evolutionary rate estimates based on the year of bacterial isolation from 1947 to 2012 indicated non-measurable rates. In outbreak areas with multiple recent outbreaks, however, there was a measurable rate of 0.4 SNPs/genome/year indicating that in areas with more intense disease activity, there is a detectable evolutionary rate. The findings suggest that long-range geographical dispersal events and mostly very low evolutionary rates are important factors contributing to a very low genetic diversity of F. tularensis populations.

    In paper II, we focused on a geographically restricted area with a history of frequent tularemia outbreaks to study F. tularensis persistence. By analyzing F. tularensis genomes from 138 individuals infected from 1994 to 2010 in Örebro County in Sweden and performing a long-term laboratory storage experiment, we explored the microbial population concept of a pathogen seed-bank. We found that eight indistinguishable genomes – each of them defined by no SNPs across 1.65 million whole-genome nucleotides – locally persisted over 2-9 years. We found unmeasurable SNP accumulation rates and overlapping bacterial generations among the outbreak genomes and that F. tularensis survived in saline for four years without nutrients. By these findings, and analyses of nucleotide substitution patterns, we suggest that a pathogen seed-bank effect is an important feature of F. tularensis ecology influencing genetic diversity.

    In paper III, we developed a new concept for source attribution of a F. tularensis sample. We aimed to identify genetic variation that is characteristic to laboratory culturing and we used culture amplification to identify genetic variation present at exceedingly low frequencies in a sample. Based on a biological enrichment scheme followed by high-throughput sequencing, we could track genetic variation back to a source sample. These results suggest that the concept has potential for linking a F. tularensis sample to its laboratory source sample.

    Taken together, the results presented in this thesis provide new understanding of the dissemination patterns and local persistence of tularemia. This is important for the interpretation of molecular epidemiology investigations of the disease. In a wider context, the results demonstrate how spatial dispersal and a microbial seed-bank effect may contribute to the diversity of a disease-causing agent. Finally, we have described a promising concept for source attribution of F. tularensis samples

  • 22.
    Hedblom, Andreas
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Department of Surgery, Cancer Research Institute and Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Translational Medicine, Lund University, Lund, Sweden.
    Hejazi, Seyed M.
    Canesin, Giacomo
    Choudhury, Reeham
    Hanafy, Khalid A.
    Csizmadia, Eva
    Persson, Jenny L.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Department of Translational Medicine, Lund University, Lund, Sweden.
    Wegiel, Barbara
    Heme detoxification by heme oxygenase-1 reinstates proliferative and immune balances upon genotoxic tissue injury2019In: Cell Death and Disease, ISSN 2041-4889, E-ISSN 2041-4889, Vol. 10, article id 72Article in journal (Refereed)
    Abstract [en]

    Phenotypic changes of myeloid cells are critical to the regulation of premature aging, development of cancer, and responses to infection. Heme metabolism has a fundamental role in the regulation of myeloid cell function and activity. Here, we show that deletion of heme oxygenase-1 (HO-1), an enzyme that removes heme, results in an impaired DNA damage response (DDR), reduced cell proliferation, and increased cellular senescence. We detected increased levels of p16INK4a, H2AXγ, and senescence-associated-β-galactosidase (SA-β-Gal) in cells and tissues isolated from HO-1-deficient mice. Importantly, deficiency of HO-1 in residential macrophages in chimeric mice results in elevated DNA damage and senescence upon radiation-induced injury. Mechanistically, we found that mammalian target of rapamycin (mTOR)/S6 protein signaling is critical for heme and HO-1-regulated phenotype of macrophages. Collectively, our data indicate that HO-1, by detoxifying heme, blocks p16INK4a expression in macrophages, preventing DNA damage and cellular senescence.

  • 23.
    Sobhy, Haitham
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Kumar, Rajendra
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Lewerentz, Jacob
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Lizana, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Stenberg, Per
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Division of CBRN Security and Defence, FOI–Swedish Defence Research Agency, Umeå, Sweden.
    Highly interacting regions of the human genome are enriched with enhancers and bound by DNA repair proteins2019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 4577Article in journal (Refereed)
    Abstract [en]

    In specific cases, chromatin clearly forms long-range loops that place distant regulatory elements in close proximity to transcription start sites, but we have limited understanding of many loops identified by Chromosome Conformation Capture (such as Hi-C) analyses. In efforts to elucidate their characteristics and functions, we have identified highly interacting regions (HIRs) using intra-chromosomal Hi-C datasets with a new computational method based on looking at the eigenvector that corresponds to the smallest eigenvalue (here unity). Analysis of these regions using ENCODE data shows that they are in general enriched in bound factors involved in DNA damage repair and have actively transcribed genes. However, both highly transcribed regions as well as transcriptionally inactive regions can form HIRs. The results also indicate that enhancers and super-enhancers in particular form long-range interactions within the same chromosome. The accumulation of DNA repair factors in most identified HIRs suggests that protection from DNA damage in these regions is essential for avoidance of detrimental rearrangements.

  • 24.
    Taheri, Nayyer
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Host-pathogen interactions during Campylobacter and Yersinia infections2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The innate immune system is known for protecting the host against invading pathogens, for instance enteropathogens infecting the gastrointestinal tract. The production of e.g. antimicrobial peptides, cytokines, and chemokines by innate immune cells and intestinal epithelial cells contribute to bacterial clearance. Given the significance of this system in overall defense, pathogens affect and/or manipulate immune cells and responses in favor of their own survival. This thesis focuses on how the Gram-negative enteropathogenic bacteria Yersinia pseudotuberculosis and Campylobacter jejuni affect the host, either directly via type 3 secretion system (T3SS) effector proteins or via outer membrane vesicles (OMVs), and how host factors potentially affect their virulence.

    Yersinia pseudotuberculosis uses its T3SS to translocate virulence factors that disable various immune responses and subvert phagocytosis. Neutrophils are main target cells during Yersinia infection. They release granules that contain proteins with antimicrobial properties to the cell's exterior upon activation through a process called degranulation. We found that extracellular Y. pseudotuberculosis could prevent neutrophil degranulation upon cell contact. Prevention of degranulation was shown to be mediated via co-operative actions of the two anti-phagocytic Yersinia outer proteins YopH and YopE. Bacterial contact with neutrophils resulted in a transient inhibition of degranulation and further prevented degranulation upon subsequent contact with avirulent Y. pseudotuberculosis (lacking YopE and YopH) as well as Escherichia coli. Thus, Y. pseudotuberculosis impairs several neutrophil defense mechanisms to remain in the extracellular environment and to increase its survival during infection.

    Campylobacter jejuni lacks a T3SS and appears to use OMVs and flagella as its main secretion apparatus. During passage through the intestine C. jejuni is exposed to bile, an important physiological component and part of the natural barrier of the intestine, and ability to resist bile is advantageous for C. jejuni survival. We investigated how C. jejuni OMV production and protein content is affected by bile. The main invasion and colonization of C. jejuni occurs in the lower part of the intestine where the concentration of bile is low compared with the proximal intestine. The OMV proteomic profiles were radically altered when bacteria were grown in low concentration of bile corresponding to cecal concentrations. Twenty-five present of the detected proteins of OMVs showed an altered abundance in the presence of low concentration of bile. In contrast, the overall proteome of the bacteria was unaffected. Moreover, OMVs frombile-exposed bacteria could enhance adhesion as well as invasion of bacteria into intestinal epithelial cells, suggesting a role of OMVs to the virulence of C. jejuni in the gut. The body temperature differs between the asymptomatic avian carriers of C. jejuni and humans, which develop symptomatic disease. We investigated whether the bacterial growth temperature affects the OMV proteome and found that 59 proteins were differentially expressed at 37°C. Among the higher abundant proteins, significantly more proteins were predicted to be related to virulence. Thus, temperature has an impact on the property of the OMVs, and this might affect the outcome of infection by C. jejuni in different hosts.

    C. jejuni OMV interactions with innate immune cells were studied by analyses of OMV-mediated inflammasome activation. OMVs were found to induce ASC- and caspase-1-dependent inflammasome activation in murine and human macrophages and dendritic cells as well as in human neutrophils. While C. jejuni infection induced a low level of inflammasome-dependent cell death, OMV-induced inflammasome activation did not result in cell death. Thus, OMVs disseminate into tissue without bacteria can be a vehicle for virulence factors without inducing inflammatory cell death.

  • 25.
    Bamyaci, Sarp
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Nordfelth, Roland
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Forsberg, Åke
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Identification of specific sequence motif of YopN of Yersinia pseudotuberculosis required for systemic infection2019In: Virulence, ISSN 2150-5594, E-ISSN 2150-5608, Vol. 10, no 1, p. 10-25Article in journal (Refereed)
    Abstract [en]

    Type III secretion systems (T3SSs) are tightly regulated key virulence mechanisms shared by many Gram-negative pathogens. YopN, one of the substrates, is also crucial in regulation of expression, secretion and activation of the T3SS of pathogenic Yersinia species. Interestingly, YopN itself is also targeted into host cells but so far no activity or direct role for YopN inside host cells has been described. Recently, we were able show that the central region of YopN is required for efficient translocation of YopH and YopE into host cells. This was also shown to impact the ability of Yersinia to block phagocytosis. One difficulty in studying YopN is to generate mutants that are not impaired in regulation of the T3SS. In this study we extended our previous work and were able to generate specific mutants within the central region of YopN. These mutants were predicted to be crucial for formation of a putative coiled-coil domain (CCD). Similar to the previously described deletion mutant of the central region, these mutants were all impaired in translocation of YopE and YopH. Interestingly, these YopN variants were not translocated into host cells. Importantly, when these mutants were introduced in cis on the virulence plasmid, they retained full regulatory function of T3SS expression and secretion. This allowed us to evaluate one of the mutants, yopNGAGA, in the systemic mouse infection model. Using in vivo imaging technology we could verify that the mutant was also attenuated in vivo and highly impaired to establish systemic infection.

  • 26. Perez-Baos, Sandra
    et al.
    Gratal, Paula
    Barrasa, Juan I.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Bone and Joint Research Unit, Rheumatology Department, IIS-Fundación Jiménez Díaz UAM, Avenida Reyes Católicos, 2. 28040, Madrid, Spain.
    Lamuedra, Ana
    Sanchez-Pernaute, Olga
    Herrero-Beaumont, Gabriel
    Largo, Raquel
    Inhibition of pSTAT1 by tofacitinib accounts for the early improvement of experimental chronic synovitis2019In: Journal of Inflammation, ISSN 1476-9255, E-ISSN 1476-9255, Vol. 16, article id 2Article in journal (Refereed)
    Abstract [en]

    Background: In order to gain insight into the early effects drawn by JAK inhibitors on intra-joint JAK/STAT-dependent signaling, we sought synovial activation of STATs and their end-products, along with their modification with tofacitinib (TOFA), at flare-up in antigen induced arthritis (AIA). New Zealand rabbits were randomly assigned to four groups –healthy controls, AIA, TOFA-treated AIA, or TOFA-treated controls–. AIA was induced with 4 weekly intra-articular ovalbumin injections in sensitized animals. TOFA (10 mg·kg− 1·day− 1) was administered for the last 2 weeks. Animals were euthanized 24 h after the last injection.

    Results: AIA animals showed high-grade synovitis, which was partially improved by TOFA. No effects of the treatment were found on serum C-reactive protein or on the synovial macrophage infiltration at this stage. Synovial MMP-1,-3 and -13 expression levels in treated AIA rabbits were found to drop to those of controls, while a downregulation of IL6, IFNγ and TNF was evident in treated versus untreated AIA rabbits. Concurrently, a reduction in pSTAT1 and SOCS1, but not in pSTAT3, SOCS3 or active NFκB-p65, was noted with TOFA.

    Conclusions: Studying the mechanism of action of immunomodulatory drugs represents a major challenge in vivo, since drug-dependent decreases in inflammation very likely mask direct effects on disease mechanisms. This study design allowed us to prevent any confounding effect resulting from reductions in the overall inflammatory status, hence assessing the true pharmacological actions of TOFA in a very severe synovitis. Our findings point to pSTAT1 and MMPs as early molecular readouts of response to this JAK inhibitor.

  • 27. Porcheret, Kate
    et al.
    van Heugten-van der Kloet, Dalena
    Goodwin, Guy M.
    Foster, Russell G.
    Wulff, Katharina
    Umeå University, Faculty of Medicine, Department of Radiation Sciences. Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
    Holmes, Emily A.
    Investigation of the impact of total sleep deprivation at home on the number of intrusive memories to an analogue trauma2019In: Translational Psychiatry, ISSN 2158-3188, E-ISSN 2158-3188, Vol. 9, article id 104Article in journal (Refereed)
    Abstract [en]

    Sleep enhances the consolidation of memory; however, this property of sleep may be detrimental in situations where memories of an event can lead to psychopathology, such as following a traumatic event. Intrusive memories of trauma are emotional memories that spring to mind involuntarily and are a core feature of post-traumatic stress disorder. Total sleep deprivation in a hospital setting on the first night after an analogue trauma (a trauma film) led to fewer intrusive memories compared to sleep as usual in one study. The current study aimed to test an extension of these findings: sleep deprivation under more naturalistic conditions-at home. Polysomnographic recordings show inconsistent sleep deprivation was achieved at home. Fewer intrusive memories were reported on day 1 after the trauma film in the sleep-deprived condition. On day 2 the opposite was found: more intrusive memories in the sleep-deprived condition. However, no significant differences were found with the removal of two participants with extreme values and no difference was found in the total number of intrusive memories reported in the week following the trauma film. Voluntary memory of the trauma film was found to be slightly impaired in the sleep deprivation condition. In conclusion, compared to our eariler findings using total sleep deprivation in a hospital setting, in the current study the use of inconsistent sleep deprivation at home does not replicate the pattern of results on reducing the number of intrusive memories. Considering the conditions under which sleep deprivation (naturalistic versus hospital) was achieved requires further examination.

  • 28.
    Surowiec, Izabella
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Sartorius Stedim Data Analytics, Tvistevägen 48, 907 36 Umeå, Sweden.
    Skotare, Tomas
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sjögren, Rickard
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Sartorius Stedim Data Analytics, Tvistevägen 48, 907 36 Umeå, Sweden.
    Gouveia-Figueira, Sandra C.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Orikiiriza, Judy Tatwan
    Bergström, Sven
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Normark, Johan
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Trygg, Johan
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Sartorius Stedim Data Analytics, Tvistevägen 48, 907 36 Umeå, Sweden.
    Joint and unique multiblock analysis of biological data: multiomics malaria study2019In: Faraday discussions (Online), ISSN 1359-6640, E-ISSN 1364-5498Article in journal (Refereed)
    Abstract [en]

    Modern profiling technologies enable obtaining large amounts of data which can be later used for comprehensive understanding of the studied system. Proper evaluation of such data is challenging, and cannot be faced by bare analysis of separate datasets. Integrated approaches are necessary, because only data integration allows finding correlation trends common for all studied data sets and revealing hidden structures not known a priori. This improves understanding and interpretation of the complex systems. Joint and Unique MultiBlock Analysis (JUMBA) is an analysis method based on the OnPLS-algorithm that decomposes a set of matrices into joint parts containing variation shared with other connected matrices and variation that is unique for each single matrix. Mapping unique variation is important from a data integration perspective, since it certainly cannot be expected that all variation co-varies. In this work we used JUMBA for integrated analysis of lipidomic, metabolomic and oxylipin datasets obtained from profiling of plasma samples from children infected with P. falciparum malaria. P. falciparum is one of the primary contributors to childhood mortality and obstetric complications in the developing world, what makes development of the new diagnostic and prognostic tools, as well as better understanding of the disease, of utmost importance. In presented work JUMBA made it possible to detect already known trends related to disease progression, but also to discover new structures in the data connected to food intake and personal differences in metabolism. By separating the variation in each data set into joint and unique, JUMBA reduced complexity of the analysis, facilitated detection of samples and variables corresponding to specific structures across multiple datasets and by doing this enabled fast interpretation of the studied system. All this makes JUMBA a perfect choice for multiblock analysis of systems biology data.

  • 29.
    Costa, Tiago
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College, London, UK.
    Francis, Monika K.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Region Västerbotten.
    Farag, Salah
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Edgren, Tomas
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden.
    Francis, Matthew S
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Measurement of Yersinia translocon pore formation in erythrocytes2019In: Pathogenic Yersinia: methods and protocols / [ed] Viveka Vadyvaloo and Matthew B. Lawrenz, New York, NY, U.S.A.: Humana Press, 2019, p. 211-229Chapter in book (Refereed)
    Abstract [en]

    Many Gram-negative pathogens produce a type III secretion system capable of intoxicating eukaryotic cells with immune-modulating effector proteins. Fundamental to this injection process is the prior secretion of two translocator proteins destined for injectisome translocon pore assembly within the host cell plasma membrane. It is through this pore that effectors are believed to travel to gain access to the host cell interior. Yersinia species especially pathogenic to humans and animals assemble this translocon pore utilizing two hydrophobic translocator proteins-YopB and YopD. Although a full molecular understanding of the biogenesis, function and regulation of this translocon pore and subsequent effector delivery into host cells remains elusive, some of what we know about these processes can be attributed to studies of bacterial infections of erythrocytes. Herein we describe the methodology of erythrocyte infections by Yersinia, and how analysis of the resultant contact-dependent hemolysis can serve as a relative measurement of YopB- and YopD-dependent translocon pore formation.

  • 30. Sidorenko, Darya S.
    et al.
    Sidorenko, Ivan A.
    Zykova, Tatyana Yu.
    Goncharov, Fedor P.
    Larsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Zhimulev, Igor F.
    Molecular and genetic organization of bands and interbands in the dot chromosome of Drosophila melanogaster2019In: Chromosoma, ISSN 0009-5915, E-ISSN 1432-0886, Vol. 128, no 2, p. 97-117Article in journal (Refereed)
    Abstract [en]

    The fourth chromosome smallest in the genome of Drosophila melanogaster differs from other chromosomes in many ways. It has high repeat density in conditions of a large number of active genes. Gray bands represent a significant part of this polytene chromosome. Specific proteins including HP1a, POF, and dSETDB1 establish the epigenetic state of this unique chromatin domain. In order to compare maps of localization of genes, bands, and chromatin types of the fourth chromosome, we performed FISH analysis of 38 probes chosen according to the model of four chromatin types. It allowed clarifying the dot chromosome cytological map consisting of 16 loose gray bands, 11 dense black bands, and 26 interbands. We described the relation between chromatin states and bands. Open aquamarine chromatin mostly corresponds to interbands and it contains 5UTRs of housekeeping genes. Their coding parts are embedded in gray bands substantially composed of lazurite chromatin of intermediate compaction. Polygenic black bands contain most of dense ruby chromatin, and also some malachite and lazurite. Having an accurate map of the fourth chromosome bands and its correspondence to physical map, we found that DNase I hypersensitivity sites, ORC2 protein, and P-elements are mainly located in open aquamarine chromatin, while element 1360, characteristic of the fourth chromosome, occupies band chromatin types. POF and HP1a proteins providing special organization of this chromosome are mostly located in aquamarine and lazurite chromatin. In general, band organization of the fourth chromosome shares the features of the whole Drosophila genome.

  • 31.
    Bamyaci, Sarp
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Multiple functions of YopN in the Yersinia pseudotuberculosis type III secretion system: from regulation to in vivo infection2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The type 3 secretion systems (T3SSs) are virulence mechanisms used by various Gram-negative bacteria to overcome the host immunity. They are often target-cell contact induced and activated. Activation results in targeting of virulence effector substrates into host cells. One class of secreted substrates, translocators, are required for the intracellular targeting of the second class, the virulence effectors, into host target cells. T3SSs are mainly regulated at 2 levels; a shift from environmental to host temperature results in low level induction of the system whereas target cell contact further induces and activates the system. In the Yersinia T3SS, YopN, one of the secreted substrates, is involved in the latter level of activation. Under non-inducing conditions, YopN complexes with TyeA, SycN and YscB and this complex suppresses the T3SS via an unknown mechanism. When the system is induced, the complex is believed to dissociate and YopN is secreted resulting in the activation of the system. Earlier studies indicated that YopN is not only secreted but also translocated into target cells in a T3SS dependent manner. TyeA, SycN and YscB bind to the C-terminal and N-terminal YopN respectively but so far the central region (CR) of YopN has not been characterized. In this study we have focused on the function of the YopN central region.

    We therefore generated in-frame deletion mutants within the CR of YopN. One of these deletion mutants, aa 76-181, showed decreased early translocation of both YopE and YopH into infected host cells and also failed to efficiently block phagocytosis by macrophages. However, the YopNΔ76-181 protein was expressed at lower levels compared to wt YopN and also showed a slightly deregulated phenotype when expressed from its native promoter and were as a consequence not possible to use in in vivo infection studies.

    Therefore, we generated mutants that disrupted a putative coiled coil domain located at the very N-terminal of CR. Similar to YopNΔ76-181, these substitution mutants were affected in the early translocation of effector proteins. Importantly, they were as stable as wt YopN when expressed from the native promoter. One of these mutants was unable to cause systemic infection in mice indicating that YopN indeed also has a direct role in virulence and is required for establishment of systemic infection in vivo.

  • 32. Tükenmez, Hasan
    et al.
    Edström, Isabel
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Ummanni, Ramesh
    Fick, Stina Berglund
    Sundin, Charlotta
    Elofsson, Mikael
    Larsson, Christer
    Mycobacterium tuberculosis virulence inhibitors discovered by Mycobacterium marinum high-throughput screening2019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 26Article in journal (Refereed)
    Abstract [en]

    High-throughput screening facilities do not generally support biosafety level 3 organisms such as Mycobacterium tuberculosis. To discover not only antibacterials, but also virulence inhibitors with either bacterial or host cell targets, an assay monitoring lung fibroblast survival upon infection was developed and optimized for 384-plate format and robotic liquid handling. By using Mycobacterium marinum as surrogate organism, 28,000 compounds were screened at biosafety level 2 classification, resulting in 49 primary hits. Exclusion of substances with unfavourable properties and known antimicrobials resulted in 11 validated hits of which 7 had virulence inhibiting properties and one had bactericidal effect also in wild type Mycobacterium tuberculosis. This strategy to discover virulence inhibitors using a model organism in high-throughput screening can be a valuable tool for other researchers working on drug discovery against tuberculosis and other biosafety level 3 infectious agents.

  • 33.
    Urban, Constantin F.
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Nett, Jeniel E
    Neutrophil extracellular traps in fungal infection2019In: Seminars in Cell and Developmental Biology, ISSN 1084-9521, E-ISSN 1096-3634, Vol. 89, p. 47-57Article in journal (Refereed)
    Abstract [en]

    Fungal infections are a continuously increasing problem in modern health care. Understanding the complex biology of the emerging pathogens and unraveling the mechanisms of host defense may form the basis for the development of more efficient diagnostic and therapeutic tools. Neutrophils play a pivotal role in the defense against fungal pathogens. These phagocytic hunters migrate towards invading fungal microorganisms and eradicate them by phagocytosis, oxidative burst and release of neutrophil extracellular traps (NETs). In the last decade, the process of NET formation has received unparalleled attention, with numerous studies revealing the relevance of this neutrophil function for control of various mycoses. Here, we describe NET formation and summarize its role as part of the innate immune defense against fungal pathogens. We highlight factors influencing the formation of these structures and molecular mechanisms employed by fungi to impair the formation of NETs or subvert their antifungal effects.

  • 34.
    Irazoki, Oihane
    et al.
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Hernandez, Sara B.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Cava, Felipe
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Peptidoglycan Muropeptides: Release, Perception, and Functions as Signaling Molecules2019In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 10, article id 500Article, review/survey (Refereed)
    Abstract [en]

    Peptidoglycan (PG) is an essential molecule for the survival of bacteria, and thus, its biosynthesis and remodeling have always been in the spotlight when it comes to the development of antibiotics. The peptidoglycan polymer provides a protective function in bacteria, but at the same time is continuously subjected to editing activities that in some cases lead to the release of peptidoglycan fragments (i.e., muropeptides) to the environment. Several soluble muropeptides have been reported to work as signaling molecules. In this review, we summarize the mechanisms involved in muropeptide release (PG breakdown and PG recycling) and describe the known PG-receptor proteins responsible for PG sensing. Furthermore, we overview the role of muropeptides as signaling molecules, focusing on the microbial responses and their functions in the host beyond their immunostimulatory activity.

  • 35.
    Müller, Daniel C.
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Kauppi, Anna
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Edin, Alicia
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University