umu.sePublikasjoner
Endre søk
Begrens søket
1234567 1 - 50 of 824
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Abbara, Aula
    et al.
    Al-Harbat, Nizar
    Karah, Nabil
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Abo-Yahya, Bashar
    El-Amin, Wael
    Hatcher, James
    Gabbar, Omar
    Antimicrobial Drug Resistance among Refugees from Syria, Jordan2017Inngår i: Emerging Infectious Diseases, ISSN 1080-6040, E-ISSN 1080-6059, Vol. 23, nr 5, 885-886 s.Artikkel i tidsskrift (Fagfellevurdert)
  • 2. Abraham, Nabil M.
    et al.
    Liu, Lei
    Jutras, Brandon Lyon
    Yadav, Akhilesh K.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Narasimhan, Sukanya
    Gopalakrishnan, Vissagan
    Ansari, Juliana M.
    Jefferson, Kimberly K.
    Cava, Felipe
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Jacobs-Wagner, Christine
    Fikrig, Erol
    Pathogen-mediated manipulation of arthropod microbiota to promote infection2017Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, nr 5, E781-E790 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Arthropods transmit diverse infectious agents; however, the ways microbes influence their vector to enhance colonization are poorly understood. Ixodes scapularis ticks harbor numerous human pathogens, including Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We now demonstrate that A. phagocytophilum modifies the I. scapularis microbiota to more efficiently infect the tick. A. phagocytophilum induces ticks to express Ixodes scapularis antifreeze glycoprotein (iafgp), which encodes a protein with several properties, including the ability to alter bacterial biofilm formation. IAFGP thereby perturbs the tick gut microbiota, which influences the integrity of the peritrophic matrix and gut barrier-critical obstacles for Anaplasma colonization. Mechanistically, IAFGP binds the terminal D-alanine residue of the pentapeptide chain of bacterial peptidoglycan, resulting in altered permeability and the capacity of bacteria to form biofilms. These data elucidate the molecular mechanisms by which a human pathogen appropriates an arthropod antibacterial protein to alter the gut microbiota and more effectively colonize the vector.

  • 3. Addario, Barbara
    et al.
    Sandblad, Linda
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Persson, Karina
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Backman, Lars
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Characterisation of Schizosaccharomyces pombe alpha-actinin2016Inngår i: PeerJ, ISSN 2167-8359, E-ISSN 2167-8359, Vol. 4, e1858Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The actin cytoskeleton plays a fundamental role in eukaryotic cells. Its reorganization is regulated by a plethora of actin-modulating proteins, such as a-actinin. In higher organisms, alpha-actinin is characterized by the presence of three distinct structural domains: an N-terminal actin-binding domain and a C-terminal region with EF-hand motif separated by a central rod domain with four spectrin repeats. Sequence analysis has revealed that the central rod domain of alpha-actinin from the fission yeast Schizosaccharomyces pombe consists of only two spectrin repeats. To obtain a firmer understanding of the structure and function of this unconventional alpha-actinin, we have cloned and characterized each structural domain. Our results show that this alpha-actinin isoform is capable of forming dimers and that the rod domain is required for this. However, its actin-binding and cross-linking activity appears less efficient compared to conventional alpha-actinins. The solved crystal structure of the actin-binding domain indicates that the closed state is stabilised by hydrogen bonds and a salt bridge not present in other a-actinins, which may reduce the affinity for actin.

  • 4.
    Ahlström, Ingela
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    A study of viral co-infection amongst children suffering from malar2013Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
  • 5.
    Ahmad, Irfan
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet; Department of Allied Health Sciences, University of Health Sciences.
    Cimdins, Annika
    Beske, Timo
    Römling, Ute
    Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium2017Inngår i: BMC Microbiology, ISSN 1471-2180, E-ISSN 1471-2180, Vol. 17, 27Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: The secondary messenger cyclic di-GMP promotes biofilm formation by up regulating the expression of csgD, encoding the major regulator of rdar biofilm formation in Salmonella typhimurium. The GGDEF/EAL domain proteins regulate the c-di-GMP turnover. There are twenty-two GGDEF/EAL domain proteins in the genome of S. typhimurium. In this study, we dissect the role of individual GGDEF/EAL proteins for csgD expression and rdar biofilm development. Results: Among twelve GGDEF domains, two proteins upregulate and among fifteen EAL domains, four proteins down regulate csgD expression. We identified two additional GGDEF proteins required to promote optimal csgD expression. With the exception of the EAL domain of STM1703, solely, diguanylate cyclase and phosphodiesterase activities are required to regulate csgD mediated rdar biofilm formation. Identification of corresponding phosphodiesterases and diguanylate cyclases interacting in the csgD regulatory network indicates various levels of regulation by c-di-GMP. The phosphodiesterase STM1703 represses transcription of csgD via a distinct promoter upstream region. Conclusion: The enzymatic activity and the protein scaffold of GGDEF/EAL domain proteins regulate csgD expression. Thereby, c-di-GMP adjusts csgD expression at multiple levels presumably using a multitude of input signals.

  • 6.
    Ahmad, Irfan
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
    Rouf, Syed Fazle
    Sun, Lei
    Cimdins, Annika
    Shafeeq, Sulman
    Le Guyon, Soazig
    Schottkowski, Marco
    Rhen, Mikael
    Romling, Ute
    BcsZ inhibits biofilm phenotypes and promotes virulence by blocking cellulose production in Salmonella enterica serovar Typhimurium2016Inngår i: Microbial Cell Factories, ISSN 1475-2859, E-ISSN 1475-2859, Vol. 15, 177Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: Cellulose, a 1,4 beta-glucan polysaccharide, is produced by a variety of organisms including bacteria. Although the production of cellulose has a high biological, ecological and economical impact, regulatory mechanisms of cellulose biosynthesis are mostly unknown. Family eight cellulases are regularly associated with cellulose biosynthesis operons in bacteria; however, their function is poorly characterized. In this study, we analysed the role of the cellulase BcsZ encoded by the bcsABZC cellulose biosynthesis operon of Salmonella enterica serovar Typhimurium (S. Typhimurium) in biofilm related behavior. We also investigated the involvement of BcsZ in pathogenesis of S. Typhimurium including a murine typhoid fever infection model. Result: In S. Typhimurium, cellulase BcsZ with a putative periplasmic location negatively regulates cellulose biosynthesis. Moreover, as assessed with a non-polar mutant, BcsZ affects cellulose-associated phenotypes such as the rdar biofilm morphotype, cell clumping, biofilm formation, pellicle formation and flagella-dependent motility. Strikingly, although upregulation of cellulose biosynthesis was not observed on agar plate medium at 37 degrees C, BcsZ is required for efficient pathogen-host interaction. Key virulence phenotypes of S. Typhimurium such as invasion of epithelial cells and proliferation in macrophages were positively regulated by BcsZ. Further on, a bcsZ mutant was outcompeted by the wild type in organ colonization in the murine typhoid fever infection model. Selected phenotypes were relieved upon deletion of the cellulose synthase BcsA and/or the central biofilm activator CsgD. Conclusion: Although the protein scaffold has an additional physiological role, our findings indicate that the catalytic activity of BcsZ effectively downregulates CsgD activated cellulose biosynthesis. Repression of cellulose production by BcsZ subsequently enables Salmonella to efficiently colonize the host.

  • 7.
    Aili, Margareta
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Isaksson, Elin L
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Carlsson, Sara E
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Wolf-Watz, Hans
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Rosqvist, Roland
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Francis, Matthew S
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Regulation of Yersinia Yop-effector delivery by translocated YopE2008Inngår i: International Journal of Medical Microbiology, ISSN 1438-4221, E-ISSN 1618-0607, Vol. 298, nr 3-4, 183-192 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The bacterial pathogen Yersinia pseudotuberculosis uses a type III secretion (T3S) system to translocate Yop effectors into eukaryotic cells. Effectors are thought to gain access to the cytosol via pores formed in the host cell plasma membrane. Translocated YopE can modulate this pore formation through its GTPase-activating protein (GAP) activity. In this study, we analysed the role of translocated YopE and all the other known Yop effectors in the regulation of effector translocation. Elevated levels of Yop effector translocation into HeLa cells occurred by YopE-defective strains, but not those defective for other Yop effectors. Only Yersinia devoid of YopK exhibits a similar hyper-translocation phenotype. Since both yopK and yopE mutants also failed to down-regulate Yop synthesis in the presence of eukaryotic cells, these data imply that translocated YopE specifically regulates subsequent effector translocation by Yersinia through at least one mechanism that involves YopK. We suggest that the GAP activity of YopE might be working as an intra-cellular probe measuring the amount of protein translocated by Yersinia during infection. This may be a general feature of T3S-associated GAP proteins, since two homologues from Pseudomonas aeruginosa, exoenzyme S (ExoS) and exoenzyme T (ExoT), can complement the hyper-translocation phenotypes of the yopE GAP mutant.

  • 8.
    Akopyan, Karen
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Edgren, Tomas
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Wang-Edgren, Helen
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Rosqvist, Roland
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Fahlgren, Anna
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Wolf-Watz, Hans
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Fällman, Maria
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Translocation of surface-localized effectors in type III secretion2011Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 108, nr 4, 1639-1644 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Pathogenic Yersinia species suppress the host immune response by using a plasmid-encoded type III secretion system (T3SS) to translocate virulence proteins into the cytosol of the target cells. T3SS-dependent protein translocation is believed to occur in one step from the bacterial cytosol to the target-cell cytoplasm through a conduit created by the T3SS upon target cell contact. Here, we report that T3SS substrates on the surface of Yersinia pseudotuberculosis are translocated into target cells. Upon host cell contact, purified YopH coated on Y. pseudotuberculosis was specifically and rapidly translocated across the target-cell membrane, which led to a physiological response in the infected cell. In addition, translocation of externally added YopH required a functional T3SS and a specific translocation domain in the effector protein. Efficient, T3SS-dependent translocation of purified YopH added in vitro was also observed when using coated Salmonella typhimurium strains, which implies that T3SS-mediated translocation of extracellular effector proteins is conserved among T3SS-dependent pathogens. Our results demonstrate that polarized T3SS-dependent translocation of proteins can be achieved through an intermediate extracellular step that can be reconstituted in vitro. These results indicate that translocation can occur by a different mechanism from the assumed single-step conduit model.

  • 9. Akram, Neelam
    et al.
    Palovaara, Joakim
    Forsberg, Jeremy
    Lindh, Markus V.
    Milton, Debra L.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Luo, Haiwei
    Gonzalez, Jose M.
    Pinhassi, Jarone
    Regulation of proteorhodopsin gene expression by nutrient limitation in the marine bacterium Vibrio sp AND42013Inngår i: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 15, nr 5, 1400-1415 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Proteorhodopsin (PR), a ubiquitous membrane photoprotein in marine environments, acts as a light-driven proton pump and can provide energy for bacterial cellular metabolism. However, knowledge of factors that regulate PR gene expression in different bacteria remains strongly limited. Here, experiments with Vibrio sp. AND4 showed that PR phototrophy promoted survival only in cells from stationary phase and not in actively growing cells. PR gene expression was tightly regulated, with very low values in exponential phase, a pronounced peak at the exponential/stationary phase intersection, and a marked decline in stationary phase. Thus, PR gene expression at the entry into stationary phase preceded, and could therefore largely explain, the stationary phase light-induced survival response in AND4. Further experiments revealed nutrient limitation, not light exposure, regulated this differential PR expression. Screening of available marine vibrios showed that the PR gene, and thus the potential for PR phototrophy, is found in at least three different clusters in the genus Vibrio. In an ecological context, our findings suggest that some PR-containing bacteria adapted to the exploitation of nutrient-rich micro-environments rely on a phase of relatively slowly declining resources to mount a cellular response preparing them for adverse conditions dispersed in the water column.

  • 10. Albrecht, Letusa
    et al.
    Moll, Kirsten
    Blomqvist, Karin
    Normark, Johan
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Chen, Qijun
    Wahlgren, Mats
    var gene transcription and PfEMP1 expression in the rosetting and cytoadhesive Plasmodium falciparum clone FCR3S1.22011Inngår i: Malaria Journal, ISSN 1475-2875, Vol. 10, 17Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: The pathogenicity of Plasmodium falciparum is in part due to the ability of the parasitized red blood cell (pRBC) to adhere to intra- vascular host cell receptors and serum-proteins. Binding of the pRBC is mediated by Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a large multi-variant molecule encoded by a family of approximate to 60 var genes. Methods: The study of var gene transcription in the parasite clone FCR3S1.2 was performed by semi-quantitative PCR and quantitative PCR (qPCR). The expression of the major PfEMP1 in FCR3S1.2 pRBC was analysed with polyclonal sera in rosette disruption assays and immunofluorecence. Results: Transcripts from var1 (FCR3S1.2(var1); IT4var21) and other var genes were detected by semi-quantitative PCR but results from qPCR showed that one var gene transcript dominated over the others (FCR3S1.2var2; IT4var60). Antibodies raised in rats to the recombinant NTS-DBL1a of var2 produced in E. coli completely and dosedependently disrupted rosettes (approximate to 95% at a dilution of 1/5). The sera reacted with the Maurer's clefts in trophozoite stages (IFA) and to the infected erythrocyte surface (FACS) indicating that FCR3S1.2var2 encodes the dominant PfEMP1 expressed in this parasite. Conclusion: The major transcript in the rosetting model parasite FCR3S1.2 is FCR3S1.2var2 (IT4var60). The results suggest that this gene encodes the PfEMP1-species responsible for the rosetting phenotype of this parasite. The activity of previously raised antibodies to the NTS-DBL1a of FCR3S1.2var1 is likely due to cross-reactivity with NTS-DBL1 alpha of the var2 encoded PfEMP1.

  • 11. Aldick, Thomas
    et al.
    Bielaszewska, Martina
    Uhlin, Bernt Eric
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Teknat- och Medfak). Umeå universitet, Medicinsk fakultet, Umeå Centre for Microbial Research (UCMR).
    Humpf, Hans-Ulrich
    Wai, Sun Nyunt
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Teknat- och Medfak). Umeå universitet, Medicinsk fakultet, Umeå Centre for Microbial Research (UCMR).
    Karch, Helge
    Vesicular stabilization and activity augmentation of enterohaemorrhagic Escherichia coli haemolysin.2009Inngår i: Molecular microbiology, ISSN 1365-2958, Vol. 71, nr 6, 1496-508 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]
    Haemolysin from enterohaemorrhagic Escherichia coli (EHEC-Hly), a putative EHEC virulence factor, belongs to the RTX (repeat-in-toxin) family whose members rapidly inactivate themselves by self-aggregation. By investigating the status of EHEC-Hly secreted extracellularly, we found the toxin both in a free, soluble form and associated, with high tendency and independently of its acylation status, to outer membrane vesicles (OMVs) extruded by EHEC. We compared the interaction of both toxin forms with erythrocytes using scanning electron microscopy and binding assays. The OMV-associated toxin was substantially (80 times) more stable under physiological conditions than the free EHEC-Hly as demonstrated by prolonged haemolytic activity (half-life time 20 h versus 15 min). The haemolysis was preceded by calcium-dependent binding of OMVs carrying EHEC-Hly to erythrocytes; this binding was mediated by EHEC-Hly. We demonstrate that EHEC-Hly is a biologically active cargo in OMVs with dual roles: a cell-binding protein and a haemolysin. These paired functions produce a biologically potent form of the OMV-associated RTX toxin and augment its potential towards target cells. Our findings provide a general concept for stabilization of RTX toxins and open new insights into the biology of these important virulence factors.
  • 12. Alekeyenko, Artyom A.
    et al.
    Ho, Joshua W. K.
    Peng, Shouyong
    Gelbart, Marnie
    Tolstorukov, Michael Y.
    Plachetka, Annette
    Kharchenko, Peter V.
    Jung, Youngsook L.
    Gorchakov, Andrey A.
    Larschan, Erica
    Gu, Tingting
    Minoda, Aki
    Riddle, Nicole C.
    Schwartz, Yuri B.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Elgin, Sarah C. R.
    Karpen, Gary H.
    Pirrotta, Vincenzo
    Kuroda, Mitzi I.
    Park, Peter J.
    Sequence-Specific Targeting of Dosage Compensation in Drosophila Favors an Active Chromatin Context2012Inngår i: PLoS Genetics, ISSN 1553-7390, Vol. 8, nr 4, e1002646- s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at "entry sites" that contain a consensus sequence motif ("MSL recognition element" or MRE). However, this motif is only similar to 2 fold enriched on X, and only a fraction of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells (which contain MSL complex) and female Kc cells (which lack the complex), we find that the presence of active chromatin modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in the genome.

  • 13. Alitalo, Antti
    et al.
    Meri, Taru
    Comstedt, Pär
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Jeffery, Luke
    Tornberg, Johanna
    Strandin, Tomas
    Lankinen, Hilkka
    Bergström, Sven
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Cinco, Marina
    Vuppala, Santosh R
    Akins, Darrin R
    Meri, Seppo
    Expression of complement factor H binding immunoevasion proteins in Borrelia garinii isolated from patients with neuroborreliosis.2005Inngår i: Eur J Immunol, ISSN 0014-2980, Vol. 35, nr 10, 3043-3053 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Lyme disease-pathogen Borrelia burgdorferi binds the complement inhibitor factor H (FH) to its outer surface protein E- (OspE) and BbA68-families of lipoproteins. In earlier studies, only serum-resistant strains of the genospecies B. burgdorferi sensu stricto or B. afzelii, but not serum-sensitive B. garinii strains, have been shown to bind FH. Since B. garinii often causes neuroborreliosis in man, we have readdressed the interactions of B. garinii with FH. B. garinii 50/97 strain did not express FH-binding proteins. By transforming the B. garinii 50/97 strain with an OspE-encoding gene from complement-resistant B. burgdorferi (ospE-297), its resistance to serum killing could be increased. OspE genes were detected and cloned from the B. garinii BITS, Pistoia and 40/97 strains by PCR and sequencing. The deduced amino acid sequences differed in an N-terminal lysine-rich FH-binding region from OspE sequences of resistant strains. Recombinant B. garinii BITS OspE protein was found to have a considerably lower FH-binding activity than the B. burgdorferi sensu stricto 297 OspE protein P21 (P21-297). Unlike bacteria that had been kept in culture for a long time, neurovirulent B. garinii strains from neuroborreliosis patients were found to express approximately 27-kDa FH-binding proteins. These were not recognized by polyclonal anti-OspE or anti-BbA68 antibodies. We conclude that B. garinii strains carry ospE genes but have a decreased expression of OspE proteins and a reduced ability to bind FH, especially when grown for prolonged periods in vitro. Recently isolated neuroinvasive B. garinii strains, however, can express FH-binding proteins, which may contribute to the virulence of neuroborreliosis-causing B. garinii strains.

  • 14. Allas, Ular
    et al.
    Toom, Lauri
    Selyutina, Anastasia
    Maeorg, Uno
    Medina, Ricardo
    Merits, Andres
    Rinken, Ago
    Hauryliuk, Vasili
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). University of Tartu, Institute of Technology, Nooruse 1, Tartu 50411, Estonia.
    Kaldalu, Niilo
    Tenson, Tanel
    Antibacterial activity of the nitrovinylfuran G1 (Furvina) and its conversion products2016Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, 36844Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    2-Bromo-5-(2-bromo-2-nitrovinyl) furan (G1 or Furvina) is an antimicrobial with a direct reactivity against thiol groups. It is active against Gram-positive and Gram-negative bacteria, yeasts and filamentous fungi. By reacting with thiol groups it causes direct damage to proteins but, as a result, is very short-living and interconverts into an array of reaction products. Our aim was to characterize thiol reactivity of G1 and its conversion products and establish how much of antimicrobial and cytotoxic effects are due to the primary activity of G1 and how much can be attributed to its reaction products. Stability of G1 in growth media as well as its conversion in the presence of thiols was characterized. The structures of G1 decomposition products were determined using NMR and mass-spectroscopy. Concentration-and time-dependent killing curves showed that G1 is bacteriostatic for Escherichia coli at the concentration of 16 mu g/ml and bactericidal at 32 mu g/ml. However, G1 is inefficient against non-growing E. coli. Addition of cysteine to medium reduces the antimicrobial potency of G1. Nevertheless, the reaction products of G1 and cysteine enabled prolonged antimicrobial action of the drug. Therefore, the activity of 2-bromo-5-(2-bromo-2-nitrovinyl) furan is a sum of its immediate reactivity and the antibacterial effects of the conversion products.

  • 15.
    Alvarez, Laura
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Espaillat, Akbar
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Hermoso, Juan A.
    de Pedro, Miguel A.
    Cava, Felipe
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Peptidoglycan Remodeling by the Coordinated Action of Multispecific Enzymes2014Inngår i: Microbial Drug Resistance, ISSN 1076-6294, E-ISSN 1931-8448, Vol. 20, nr 3, 190-198 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The peptidoglycan (PG) cell wall constitutes the main defense barrier of bacteria against environmental insults and acts as communication interface. The biochemistry of this macromolecule has been well characterized throughout the years but recent discoveries have unveiled its chemical plasticity under environmental stresses. Non-canonical D-amino acids (NCDAA) are produced and released to the extracellular media by diverse bacteria. Such molecules govern cell wall adaptation to challenging environments through their incorporation into the polymer, a widespread capability among bacteria that reveals the inherent catalytic plasticity of the enzymes involved in the cell wall metabolism. Here, we analyze the recent structural and biochemical characterization of Bsr, a new family of broad spectrum racemases able to generate a wide range of NCDAA. We also discuss the necessity of a coordinated action of PG multispecific enzymes to generate adequate levels of modification in the murein sacculus. Finally, we also highlight how this catalytic plasticity of NCDAA-incorporating enzymes has allowed the development of new revolutionary methodologies for the study of PG modes of growth and in vivo dynamics.

  • 16.
    Alvarez, Laura
    et al.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Hernandez, Sara B
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    de Pedro, Miguel A
    Cava, Felipe
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Ultra-Sensitive, High-Resolution Liquid Chromatography Methods for the High-Throughput Quantitative Analysis of Bacterial Cell Wall Chemistry and Structure2016Inngår i: Bacterial Cell Wall Homeostasis: Methods and Protocols / [ed] Hee-Jeon Hong, New York: Springer Science+Business Media B.V., 2016, Vol. 1440, 11-27 s.Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    High-performance liquid chromatography (HPLC) analysis has been critical for determining the structural and chemical complexity of the cell wall. However this method is very time consuming in terms of sample preparation and chromatographic separation. Here we describe (1) optimized methods for peptidoglycan isolation from both Gram-negative and Gram-positive bacteria that dramatically reduce the sample preparation time, and (2) the application of the fast and highly efficient ultra-performance liquid chromatography (UPLC) technology to muropeptide separation and quantification. The advances in both analytical instrumentation and stationary-phase chemistry have allowed for evolved protocols which cut run time from hours (2-3 h) to minutes (10-20 min), and sample demands by at least one order of magnitude. Furthermore, development of methods based on organic solvents permits in-line mass spectrometry (MS) of the UPLC-resolved muropeptides. Application of these technologies to high-throughput analysis will expedite the better understanding of the cell wall biology.

  • 17.
    Amer, Ayad
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Costa, Tiago
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Farag, Salah
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Avican, Ummehan
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Forsberg, Åke
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Francis, Matthew
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Genetically engineered frameshifted YopN-TyeA chimeras influence type III secretion system function in Yersinia pseudotuberculosis2013Inngår i: PLoS ONE, ISSN 1932-6203, Vol. 8, nr 10, e77767- s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Type III secretion is a tightly controlled virulence mechanism utilized by many gram negative bacteria to colonize their eukaryotic hosts. To infect their host, human pathogenic Yersinia spp. translocate protein toxins into the host cell cytosol through a preassembled Ysc-Yop type III secretion device. Several of the Ysc-Yop components are known for their roles in controlling substrate secretion and translocation. Particularly important in this role is the YopN and TyeA heterodimer. In this study, we confirm that Y. pseudotuberculosis naturally produce a 42 kDa YopN-TyeA hybrid protein as a result of a +1 frame shift near the 3 prime of yopN mRNA, as has been previously reported for the closely related Y. pestis. To assess the biological role of this YopN-TyeA hybrid in T3SS by Y. pseudotuberculosis, we used in cis site-directed mutagenesis to engineer bacteria to either produce predominately the YopN-TyeA hybrid by introducing +1 frame shifts to yopN after codon 278 or 287, or to produce only singular YopN and TyeA polypeptides by introducing yopN sequence from Y. enterocolitica, which is known not to produce the hybrid. Significantly, the engineered 42 kDa YopN-TyeA fusions were abundantly produced, stable, and were efficiently secreted by bacteria in vitro. Moreover, these bacteria could all maintain functionally competent needle structures and controlled Yops secretion in vitro. In the presence of host cells however, bacteria producing the most genetically altered hybrids (+1 frameshift after 278 codon) had diminished control of polarized Yop translocation. This corresponded to significant attenuation in competitive survival assays in orally infected mice, although not at all to the same extent as Yersinia lacking both YopN and TyeA proteins. Based on these studies with engineered polypeptides, most likely a naturally occurring YopN-TyeA hybrid protein has the potential to influence T3S control and activity when produced during Yersinia-host cell contact.

  • 18.
    Amer, Ayad
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Gurung, Jyoti
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Costa, Tiago
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Ruuth, Kristina
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Zavialov, Anton
    Joint Biotechnology Laboratory, Department of Chemistry, University of Turku, Turku, Finland.
    Forsberg, Åke
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Francis, Matthew S
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    YopN and TyeA Hydrophobic Contacts Required for Regulating Ysc-Yop Type III Secretion Activity by Yersinia pseudotuberculosis2016Inngår i: Frontiers in Cellular and Infection Microbiology, E-ISSN 2235-2988, Vol. 6, 66Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Yersinia bacteria target Yop effector toxins to the interior of host immune cells by the Ysc-Yop type III secretion system. A YopN-TyeA heterodimer is central to controlling Ysc-Yop targeting activity. A + 1 frameshift event in the 3-prime end of yopN can also produce a singular secreted YopN-TyeA polypeptide that retains some regulatory function even though the C-terminal coding sequence of this YopN differs greatly from wild type. Thus, this YopN C-terminal segment was analyzed for its role in type III secretion control. Bacteria producing YopN truncated after residue 278, or with altered sequence between residues 279 and 287, had lost type III secretion control and function. In contrast, YopN variants with manipulated sequence beyond residue 287 maintained full control and function. Scrutiny of the YopN-TyeA complex structure revealed that residue W279 functioned as a likely hydrophobic contact site with TyeA. Indeed, a YopNW279G mutant lost all ability to bind TyeA. The TyeA residue F8 was also critical for reciprocal YopN binding. Thus, we conclude that specific hydrophobic contacts between opposing YopN and TyeA termini establishes a complex needed for regulating Ysc-Yop activity.

  • 19.
    Amer, Ayad
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Åhlund, Monika
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Bröms, Jeanette
    Department of Medical Countermeasures, Swedish Defense Research Agency, Division of NBC12 Defense, Umeå, Sweden.
    Forsberg, Åke
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Francis, Matthew
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Impact of the N-terminal secretor domain on YopD translocator function in Yersinia pseudotuberculosis type III secretion2011Inngår i: Journal of Bacteriology, ISSN 0021-9193, E-ISSN 1098-5530, Vol. 193, nr 23, 6683-6700 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Type III secretion systems (T3SSs) secrete needle components, pore-forming translocators, and the translocated effectors. In part, effector recognition by a T3SS involves their N-terminal amino acids and their 5′ mRNA. To investigate whether similar molecular constraints influence translocator secretion, we scrutinized this region within YopD from Yersinia pseudotuberculosis. Mutations in the 5′ end of yopD that resulted in specific disruption of the mRNA sequence did not affect YopD secretion. On the other hand, a few mutations affecting the protein sequence reduced secretion. Translational reporter fusions identified the first five codons as a minimal N-terminal secretion signal and also indicated that the YopD N terminus might be important for yopD translation control. Hybrid proteins in which the N terminus of YopD was exchanged with the equivalent region of the YopE effector or the YopB translocator were also constructed. While the in vitro secretion profile was unaltered, these modified bacteria were all compromised with respect to T3SS activity in the presence of immune cells. Thus, the YopD N terminus does harbor a secretion signal that may also incorporate mechanisms of yopD translation control. This signal tolerates a high degree of variation while still maintaining secretion competence suggestive of inherent structural peculiarities that make it distinct from secretion signals of other T3SS substrates.

  • 20.
    Anderl, Ines
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Activation of the Cellular Immune Response in Drosophila melanogaster Larvae2015Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    During the last 40 years, Drosophila melanogaster has become an invaluable tool in understanding innate immunity. The innate immune system of Drosophila consists of a humoral and a cellular component. While many details are known about the humoral immune system, our knowledge about the cellular immune system is comparatively small. Blood cells or hemocytes constitute the cellular immune system. Three blood types have been described for Drosophila larvae. Plasmatocytes are phagocytes with a plethora of functions. Crystal cells mediate melanization and contribute to wound healing. Plasmatocytes and crystal cells constitute the blood cell repertoire of a healthy larva, whereas lamellocytes are induced in a demand-adapted manner after infection with parasitoid wasp eggs. They are involved in the melanotic encapsulation response against parasites and form melanotic nodules that are also referred to as tumors.

    In my thesis, I focused on unraveling the mechanisms of how the immune system orchestrates the cellular immune response. In particular, I was interested in the hematopoiesis of lamellocytes.

    In Article I, we were able to show that ectopic expression of key components of a number of signaling pathways in blood cells induced the development of lamellocytes, led to a proliferative response of plasmatocytes, or to a combination of lamellocyte activation and plasmatocyte proliferation.

    In Article II, I combined newly developed fluorescent enhancer-reporter constructs specific for plasmatocytes and lamellocytes and developed a “dual reporter system” that was used in live microscopy of fly larvae. In addition, we established flow cytometry as a tool to count total blood cell numbers and to distinguish between different blood cell types. The “dual reporter system” enabled us to differentiate between six blood cell types and established proliferation as a central feature of the cellular immune response. The combination flow cytometry and live imaging increased our understanding of the tempo-spatial events leading to the cellular immune reaction.

    In Article III, I developed a genetic modifier screen to find genes involved in the hematopoiesis of lamellocytes. I took advantage of the gain-of-function phenotype of the Tl10b mutation characterized by an activated cellular immune system, which induced the formation blood cell tumors. We screened the right arm of chromosome 3 for enhancers and suppressors of this mutation and uncovered ird1.

    Finally in Article IV, we showed that the activity of the Toll signaling pathway in the fat body, the homolog of the liver, is necessary to activate the cellular immune system and induce lamellocyte hematopoiesis.

  • 21.
    Anderl, Ines
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Infection-induced proliferation is a central hallmark of the activation of the cellular immune response in Drosophila larvae.Manuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Blood cells have important roles in immune reactions in all metazoan species. In Drosophila melanogaster larvae, phagocytic plasmatocytes are the main blood cell (hemocyte) type. Lamellocytes participate in encapsulating foreign objects and are formed in response to parasitoid wasps laying their eggs into the hemocoel of the larvae. The immune reaction against wasps requires controlled recruitment and action of hemocytes from the lymph glands, sessile islets and circulation. However, the contribution of these different hematopoietic compartments to the immune-induced hemocyte pool remains unclear. We used eater-GFP and MSNF9MO-mCherry to fluorescently tag plasmatocytes and lamellocytes, respectively, and utilized flow cytometry and in vivo imaging to assess the hemocyte numbers and types in circulation and in sessile compartments after infection by three wasp species of the genus Leptopilina. We detected five different hemocyte types based on fluorescence, and a population of non-fluorescent cells. While non-infected larvae generally had only one, eaterGFP-high plasmatocyte population, early after wasp infection a new, eaterGFP-low cell population appeared in circulation. EaterGFP-high and –low cells both accumulated msnCherry during the immune response, and formed two cell lineages. Whereas the eaterGFP-low cells gradually lost GFP, the eaterGFP-high cells retained it at high levels. We suggest that eaterGFP-low cells represent an immune-induced hemocyte precursor cell pool, which, via a prelamellocyte stage, gives rise to lamellocytes. EaterGFP-high plasmatocytes also differentiated into large, msnCherry-positive hemocytes on wasp eggs, but these cells retain plasmatocyte identity. Importantly, all hemocyte types, except for lamellocytes, were able to divide after wasp infection, contributing to the increased hemocyte numbers after infection. We conclude that orchestrated differentiation and division of different hemocyte types in circulation and in sessile compartment is key to a successful immune response against parasitoid wasps.

  • 22.
    Anderl, Ines
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Laboratory of Genetic Immunology, BioMediTech, University of Tampere, Tampere, Finland.
    Hultmark, Dan
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Laboratory of Genetic Immunology, BioMediTech, University of Tampere, Tampere, Finland.
    New ways to make a blood cell2015Inngår i: eLIFE, E-ISSN 2050-084X, Vol. 4, e06877Artikkel i tidsskrift (Annet vitenskapelig)
  • 23.
    Anderl, Ines
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland.
    Vesala, Laura
    Ihalainen, Teemu O.
    Vanha-aho, Leena-Maija
    Andó, István
    Rämet, Mika
    Hultmark, Dan
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland.
    Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection2016Inngår i: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 12, nr 7, e1005746Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cellular immune responses require the generation and recruitment of diverse blood cell types that recognize and kill pathogens. In Drosophila melanogaster larvae, immune-inducible lamellocytes participate in recognizing and killing parasitoid wasp eggs. However, the sequence of events required for lamellocyte generation remains controversial. To study the cellular immune system, we developed a flow cytometry approach using in vivo reporters for lamellocytes as well as for plasmatocytes, the main hemocyte type in healthy larvae. We found that two different blood cell lineages, the plasmatocyte and lamellocyte lineages, contribute to the generation of lamellocytes in a demand-adapted hematopoietic process. Plasmatocytes transdifferentiate into lamellocyte-like cells in situ directly on the wasp egg. In parallel, a novel population of infection-induced cells, which we named lamelloblasts, appears in the circulation. Lamelloblasts proliferate vigorously and develop into the major class of circulating lamellocytes. Our data indicate that lamellocyte differentiation upon wasp parasitism is a plastic and dynamic process. Flow cytometry with in vivo hemocyte reporters can be used to study this phenomenon in detail.

  • 24.
    Andersson, Christopher
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Regulatory pathways and virulence inhibition in Listeria monocytogenes2016Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Listeria monocytogenes is a rod-shaped Gram positive bacterium. It generally exist ubiquitously in nature, where it lives as a saprophyte. Occasionally it however enters the food chain, from where it can be ingested by humans and cause gastro-intestinal distress. In immunocompetent individuals L. monocytogenes is generally cleared within a couple of weeks, but in immunocompromised patients it can progress to listeriosis, a potentially life-threatening infection in the central nervous system. If the infected individual is pregnant, the bacteria can cross the placental barrier and infect the fetus, possibly leading to spontaneous abortion.

    The infectivity of L. monocytogenes requires a certain set of genes, and the majority of them is dependent on the transcriptional regulator PrfA. The expression and activity of PrfA is controlled at several levels, and has traditionally been viewed to be active at 37 °C (virulence conditions) where it bind as a homodimer to a “PrfA-box” and induces the expression of the downstream gene.

    One of these genes is ActA, which enables intracellular movement by recruiting an actin polymerizing protein complex. When studying the effects of a blue light receptor we surprisingly found an effect of ActA at non-virulent conditions, where it is required for the bacteria to properly react to light exposure.

    To further study the PrfA regulon we tested deletion mutants of several PrfA-regulated virulence genes in chicken embryo infection studies. Based on these studies we could conclude that the chicken embryo model is a viable complement to traditional murine models, especially when investigating non-traditional internalin pathogenicity pathways. We have also studied the effects of small molecule virulence inhibitors that, by acting on PrfA, can inhibit L. monocytogenes infectivity in cell cultures with concentrations in the low micro-molar range.

  • 25.
    Andersson, Christopher
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Gripenland, Jonas
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Johansson, Jörgen
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Using the chicken embryo to assess virulence of Listeria monocytogenes and to model other microbial infections2015Inngår i: Nature Protocols, ISSN 1754-2189, E-ISSN 1750-2799, Vol. 10, nr 8, 1155-1164 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Microbial infections are a global health problem, particularly as microbes are continually developing resistance to antimicrobial treatments. An effective and reliable method for testing the virulence of different microbial pathogens is therefore a useful research tool. This protocol describes how the chicken embryo can be used as a trustworthy, inexpensive, ethically desirable and quickly accessible model to assess the virulence of the human bacterial pathogen Listeria monocytogenes, which can also be extended to other microbial pathogens. We provide a step-by-step protocol and figures and videos detailing the method, including egg handling, infection strategies, pathogenicity screening and isolation of infected organs. From the start of incubation of the fertilized eggs, the protocol takes <4 weeks to complete, with the infection part taking only 3 d. We discuss the appropriate controls to use and potential adjustments needed for adapting the protocol for other microbial pathogens.

  • 26.
    Andersson, Elisabet
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    The evolutionary study of the immunoglobulin heavy chain genes of a bony fish, rainbow trout (Oncorhynchus mykiss)1995Doktoravhandling, med artikler (Annet vitenskapelig)
  • 27. Andersson, K
    et al.
    Carballeira Suarez, N
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Magnusson, K E
    Persson, C
    Stendahl, O
    Wolf-Watz, H
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Fällman, M
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis.1996Inngår i: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 20, nr 5, 1057-69 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The PTPase YopH of Yersinia is essential to the ability of these bacteria to block phagocytosis. Wild-type Yersinia pseudotuberculosis, but not the yopH mutant strain, resisted phagocytosis by J774 cells. Ingestion of a yopH mutant was dependent on tyrosine kinase activity. Transcomplementation with wild-type yopH restored the anti-phagocytic effect, whereas introduction of the gene encoding the catalytically inactive yopHC403A was without effect. The PTPase inhibitor orthovanadate impaired the anti-phagocytic effect of the wild-type strain, further demonstrating the importance of bacteria-derived PTPase activity for this event. The ability to resist phagocytosis indicates that the effect of the bacterium is immediately exerted when it becomes associated with the phagocyte. Within 30 s after the onset of infection, wild-type Y. pseudotuberculosis caused a YopH-dependent dephosphorylation of phosphotyrosine proteins in J774 cells. Furthermore, interaction of the cells with phagocytosable strains led to a rapid and transient increase in tyrosine phosphorylation of paxillin and some other proteins, an event dependent on the presence of the bacterial surface-located protein invasin. Co-infection with the phagocytosable strain and the wild-type strain abolished the induction of tyrosine phosphorylation. Taken together, the present findings demonstrate an immediate YopH-mediated dephosphorylation of macrophage phosphotyrosine proteins, suggesting that this PTPase acts by preventing early phagocytosis-linked signalling in the phagocyte.

  • 28. Andersson, Karin
    et al.
    Pokrzywa, M
    Dacklin, Ingrid
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Lundgren, Erik
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Inhibition of TTR aggregation-induced cell death: a new role for serum amyloid P component2013Inngår i: PLoS ONE, ISSN 1932-6203, Vol. 8, nr 2Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    BACKGROUND: Serum amyloid P component (SAP) is a glycoprotein that is universally found associated with different types of amyloid deposits. It has been suggested that it stabilizes amyloid fibrils and therefore protects them from proteolytic degradation.

    METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we show that SAP binds not only to mature amyloid fibrils but also to early aggregates of amyloidogenic mutants of the plasma protein transthyretin (TTR). It does not inhibit fibril formation of TTR mutants, which spontaneously form amyloid in vitro at physiological pH. We found that SAP prevents cell death induced by mutant TTR, while several other molecules that are also known to decorate amyloid fibrils do not have such effect. Using a Drosophila model for TTR-associated amyloidosis, we found a new role for SAP as a protective factor in inhibition of TTR-induced toxicity. Overexpression of mutated TTR leads to a neurological phenotype with changes in wing posture. SAP-transgenic flies were crossed with mutated TTR-expressing flies and the results clearly confirmed a protective effect of SAP on TTR-induced phenotype, with an almost complete reduction in abnormal wing posture. Furthermore, we found in vivo that binding of SAP to mutated TTR counteracts the otherwise detrimental effects of aggregation of amyloidogenic TTR on retinal structure.

    CONCLUSIONS/SIGNIFICANCE: Together, these two approaches firmly establish the protective effect of SAP on TTR-induced cell death and degenerative phenotypes, and suggest a novel role for SAP through which the toxicity of early amyloidogenic aggregates is attenuated.

  • 29. Andersson, Karin
    et al.
    Pokrzywa, Malgorzata
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Dacklin, Ingrid
    Lundgren, Erik
    Inhibition of amyloid-induced apoptosis - a new role for serum amyloid P componentManuskript (Annet (populærvitenskap, debatt, mm))
  • 30.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Almqvist, Fredrik
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Kemi.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Physical Properties of Biopolymers Assessed by Optical Tweezers: Analysis of folding and refolding of bacterial pili2008Inngår i: ChemPhysChem, ISSN 1439-4235, Vol. 9, nr 2, 221-235 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Bacterial adhesion to surfaces mediated by specific adhesion organelles that promote infections, as exemplified by the pili of uropathogenic E. coli, is studied mostly at the level of cell-cell interactions and thereby reflects the averaged behavior of multiple pili. The role of pilus rod structure has therefore only been estimated from the outcome of experiments involving large numbers of organelles at the same time. It has, however, lately become clear that the biomechanical behavior of the pilus shafts play an important, albeit hitherto rather unrecognized, role in the adhesion process. For example, it has been observed that shafts from two different strains, even though they are similar in structure, result in large differences in the ability of the bacteria to adhere to their host tissue. However, in order to identify all properties of pilus structures that are of importance in the adhesion process, the biomechanical properties of pili must be assessed at the single-molecule level. Due to the low range of forces of these structures, until recently it was not possible to obtain such information. However, with the development of force-measuring optical tweezers (FMOT) with force resolution in the low piconewton range, it has lately become possible to assess forces mediated by individual pili on single living bacteria in real time. FMOT allows for a more or less detailed mapping of the biomechanical properties of individual pilus shafts, in particular those that are associated with their elongation and contraction under stress. This Mi- nireview presents the FMOT technique, the biological model system, and results from assessment of the biomechanical properties of bacterial pili. The information retrieved is also compared with that obtained by atomic force microscopy.

  • 31.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Uhlin, Bernt Eric
    Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Characterization of the mechanical properties of fimbrial structures by optical tweezers2006Inngår i: Proceedings of the VIII. Annual Linz Winter Workshop, 2006, 19-22 s.Konferansepaper (Fagfellevurdert)
  • 32.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles2006Inngår i: Proceedings of SPIE vol. 6326: Optical Trapping and Optical Micromanipulation III, 2006, 632620- s.Konferansepaper (Fagfellevurdert)
  • 33.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Björnham, Oscar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Bullitt, Esther
    Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston MA, USA.
    Svantesson, Mats
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Differentiating pili expressed by enterotoxigenic and uropathogenic escherichia coli with optical tweezersManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Enterotoxigenic Escherichia coli (ETEC) attach to the host epithelium in the intestinal tract via specific adhesion organelles expressed on the cell membrane. We investigate, by force measuring optical tweezers, the intrinsic biomechanical properties and kinetics of the colonization factor I (CFA/I) at a single pilus level. The measurements indicate that CFA/I pili are helix-like structures that can both be unraveled to a linearized polymer by applying a small external force, 7.5 ± 1.5 pN but also regain its helix-like structure when the applied force is reduced. The data confirm that layer-to-layer interactions, that stabilize the helix-like structure, are much weaker than the interactions found in pili expressed by Uropathogenic Escherichia coli (UPEC). It is also found, contrary to previous results assessed from UPEC pili, that the CFA/I undergo in some cases a sudden structural change, a force drop of ~2 pN, when unraveled from the helix-like configuration to an open helical linearized fiber. These data suggest a rotation of the filament about its helical axis, followed by a region in which the force required to extend the pili further increases rapidly. During this final elongation to a super-extended fiber, CFA/I pili do not show any structural transition as seen for UPEC pili. In addition, the CFA/I pili show faster kinetics than UPEC pili that allows for a larger dynamic regime of in vivo shear forces. The unfolding and refolding possibility points toward an organelle that has evolved to allow for dynamic damping of external forces and handling of harsh motion without breaking.

  • 34.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    A sticky chain model of the elongation and unfolding of escherichia coli P pili under stress2006Inngår i: Biophysical Journal, ISSN 0006-3495, Vol. 90, nr 5, 1521-1534 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A model of the elongation of P pili expressed by uropathogenic Escherichia coli exposed to stress is presented. The model is based upon the sticky chain concept, which is based upon Hooke’s law for elongation of the layer-to-layer and head-to-tail bonds between neighboring units in the PapA rod and a kinetic description of the opening and closing of bonds, described by rate equations and an energy landscape model. It provides an accurate description of the elongation behavior of P pili under stress and supports a hypothesis that the PapA rod shows all three basic stereotypes of elongation/unfolding: elongation of bonds in parallel, the zipper mode of unfolding, and elongation and unfolding of bonds in series. The two first elongation regions are dominated by a cooperative bond opening, in which each bond is influenced by its neighbor, whereas the third region can be described by individual bond opening, in which the bonds open and close randomly. A methodology for a swift extraction of model parameters from force-versus-elongation measurements performed under equilibrium conditions is derived. Entities such as the free energy, the stiffness, the elastic elongation, the opening length of the various bonds, and the number of PapA units in the rod are determined.

  • 35.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Dynamic Force Spectroscopy of E. coli P Pili2006Inngår i: Biophysical Journal, ISSN 0006-3495, Vol. 91, nr 7, 2717-2725 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Surface organelles (so-called pili) expressed on the bacterial membrane mediate the adhesion of Escherichia coli causing urinary tract infection. These pili possess some extraordinary elongation properties that are assumed to allow a close bacterium-to-host contact even in the presence of shear forces caused by urine flow. The elongation properties of P pili have therefore been assessed for low elongation speeds (steady-state conditions). This work reports on the behavior of P pili probed by dynamic force spectroscopy. A kinetic model for the unfolding of a helixlike chain structure is derived and verified. It is shown that the unfolding of the quaternary structure of the PapA rod takes place at a constant force that is almost independent of elongation speed for slow elongations (up to ~0.4 μm/s), whereas it shows a dynamic response with a logarithmic dependence for fast elongations. The results provide information about the energy landscape and reaction rates. The bond length and thermal bond opening and closure rates for the layer-to-layer bond have been assessed to ~0.76 nm, ~0.8 Hz, and ~8 GHz, respectively. The results also support a previously constructed sticky-chain model for elongation of the PapA rod that until now had been experimentally verified only under steady-state conditions.

  • 36.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Force measuring optical tweezers system for long time measurements of P pili stability2006Inngår i: Proceedings of the SPIE vol. 6088: Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues IV, 2006, 608810- s.Konferansepaper (Fagfellevurdert)
  • 37.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Force measuring optical tweezers system for long time measurements of P pili stability2006Inngår i: Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues IV / [ed] Farkas, DL, Nicolau, DV, Leif, RC, 2006, Vol. 6088, 608810- s.Konferansepaper (Fagfellevurdert)
    Abstract [en]

    A force-measuring optical tweezers instrumentation and long time measurements of the elongation and retraction of bacterial fimbriae from Uropathogenic E. coli (UPEC) under strain are presented. The instrumentation is presented in some detail. Special emphasis is given to measures taken to reduce the influence of noise and drifts in the system and from the surrounding, which makes long term force measurements possible. Individual P pili from UPEC bacteria were used as a biological model system for repetitive unfolding and refolding cycles of bacterial fimbriae under equilibrium conditions. P pili have evolved into a three-dimensional helix-like structure, the PapA rod, that can be successively and significantly elongated and/or unfolded when exposed to external forces. The instrumentation is used for characterization of the force-vs.-elongation response of the PapA rod of individual P pili, with emphasis on the long time stability of the forced unfolding and refolding of the helical structure of the PapA rod. The results show that the PapA rod is capable of withstanding extensive strain, leading to a complete unfolding of the helical structure, repetitive times during the life cycle of a bacterium without any noticeable alteration of the mechanical properties of the P pili. This function is believed to be importance for UPEC bacteria in vivo since it provides a close contact to a host cell (which is an initial step of invasion) despite urine cleaning attempts.

  • 38.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Svantesson, Mats
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Björnham, Oscar
    Swedish Defence Research Agency (FOI), SE-906 21 Umeå, Sweden.
    Badahdah, Arwa
    Department of Oral Biology, Boston University School of Dental Medicine.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Bullitt, Esther
    Department of Physiology and Biophysics, Boston University School of Medicine.
    A structural basis for sustained bacterial adhesion: Biomechanical properties of CFA/I Pili2012Inngår i: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 415, nr 5, 918-928 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal disease worldwide. Adhesion pili (or fimbriae), such as the CFA/I (colonization factor antigen I) organelles that enable ETEC to attach efficiently to the host intestinal tract epithelium, are critical virulence factors for initiation of infection. We characterized at single organelle level the intrinsic biomechanical properties and kinetics of individual CFA/I pili, demonstrating that weak external forces (7.5 pN) are sufficient to unwind the intact helical filament of this prototypical ETEC pilus and that it quickly regains its original structure when the force is removed. While the general relationship between exertion of force and an increase in the filament length for CFA/I pili associated with diarrheal disease is analogous to that of P-pili and type 1 pili, associated with urinary tract and other infections, the biomechanical properties of these different pili differ in key quantitative details. Unique features of CFA/I pili, including the significantly lower force required for unwinding, the higher extension speed at which the pili enter a dynamic range of unwinding, and the appearance of sudden force drops during unwinding can be attributed to morphological features of CFA/I pili including weak layer-to-layer interactions between subunits on adjacent turns of the helix, and the approximately horizontal orientation of pilin subunits with respect to the filament axis. Our results indicate that ETEC CFA/I pili are flexible organelles optimized to withstand harsh motion without breaking, resulting in continued attachment to the intestinal epithelium by the pathogenic bacteria that express these pili.

  • 39.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    The biomechanical properties of E. coli pili for urinary tract attachment reflect the host environment2007Inngår i: Biophysical Journal, ISSN 0006-3495, Vol. 93, nr 9, 3008-3014 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Uropathogenic Escherichia coli express pili that mediate binding to host tissue cells. We demonstrate with in situ force measuring optical tweezers that the ability of P and type 1 pili to elongate by unfolding under exposure to stress is a shared property with some differences. The unfolding force of the quaternary structures under equilibrium conditions is similar, 28 ± 2 and 30 ± 2 pN for P pili and type 1 pili, respectively. However, type 1 pili are found to be more rigid than P pili through their stronger layer-to-layer bonds. It was found that type 1 pili enter a dynamic regime at elongation speeds of 6 nm/s, compared to 400 nm/s for P pili; i.e., it responds faster to an external force. This possibly helps type 1 to withstand the irregular urine flow in the urethra as compared to the more constant urine flow in the upper urinary tract. Also, it was found that type 1 pili refold during retraction at two different levels that possibly could be related to several possible configurations. Our findings highlight functions that are believed to be of importance for the bacterial ability to sustain a basic antimicrobial mechanism of the host and for bacterial colonization.

  • 40.
    Andersson, Marie
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Immunopathogenesis of relapsing fever borreliosis2008Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Relapsing fever (RF) is caused by different species of Borrelia transmitted by soft ticks or by the human body louse. Illness is characterized by reappearing peaks of high concentrations of spirochetes in blood, concordant with fever peaks separated by asymptomatic periods. Neuroborreliosis is one of the most severe manifestations of RF borreliosis. To understand the immune response during early RF, we analyzed immune cells in brain and kidney of mice infected with B. crocidurae during the acute infection. Our results indicate that brain defense is comprised primarily of innate immune cells. Despite the infiltration of innate immune cells, Borrelia was not completely eradicated. A failure of the host brain to clear the bacteria may give the pathogen a niche where it can persist. Using our mouse model, we revealed that Borrelia duttonii could persist in the mouse brain for up to 270 days, without being present in the circulation. The infection was silent with no change in host gene expression, and the spirochetes could re-enter the circulation after immunosuppression. We propose that the brain is used by the pathogen to evade host immunity and serves as a possible natural reservoir for B. duttonii, a spirochete that has rarely been found in any mammalian host other than man. Borrelia-induced complications during pregnancy have been reported, and are especially common in RF. In our established mouse model of gestational RF, we could show that the fetuses suffered from severe pathology and growth retardation, probably as a consequence of placental destruction. We could also show trans-placental transmission of the bacteria leading to neonatal RF. Surprisingly, pregnant dams had a lower bacterial load and less severe disease, showing that pregnancy has a protective effect during RF. We have used the gestational RF model to investigate host factors favoring disease resolution. Because the spleen is the primary organ responsible for trapping and removing blood-borne pathogens, we have compared temporal changes in spleen immune cell populations and cytokine/chemokine induction during the infection. Spleens of pregnant mice had earlier neutrophil infiltration, as well as faster and higher production of pro-inflammatory mediators. This rapid, robust response suggests a more effective host defense. Thus, an enhanced pro-inflammatory response during pregnancy imparts a distinct advantage in controlling the severity of relapsing fever infection.

  • 41.
    Andersson, Marie
    et al.
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Larsson, Christer
    Nilsson, Ingela
    Guo, Betty P.
    Bergström, Sven
    Enhanced inflammatory response to relapsing fever during pregnancyManuskript (Annet vitenskapelig)
  • 42.
    Andersson, Marie
    et al.
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Nordstrand, Annika
    Shamaei-Tousi, Alireza
    Jansson, Anna
    Bergström, Sven
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Guo, Betty P
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    In situ immune response in brain and kidney during early relapsing fever borreliosis.2007Inngår i: Journal of Neuroimmunology, ISSN 0165-5728, Vol. 183, nr 1-2, 26-32 s.Artikkel i tidsskrift (Fagfellevurdert)
  • 43.
    Andersson, Åsa
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    B cell repertoire development in normal physiology and autoimmune disease1993Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    The B cell repertoire in the neonatal immune system (IS) is characterised by reactivity towards self-components, including other immunoglobulin (Ig) V-regions. These properties have been suggested to be a requirement for the development of a normal immune system. DNA sequencing of two interacting Ig idiotypes, derived from neonatal, preimmune mice, demonstrated that such idiotypic connectivity is germ- line encoded and devoid of VDJ junctional diversity. The serum levels of the same Ig idiotypes were studied in normal mice and demonstrated that the expression in serum fluctuated over time in a pattern compatible with a complex dynamic system. In contrast, similar analyses in autoimmune mice or humans demonstrated fluctuations in Ig titers that differed significantly from the healthy individuals. These findings suggested that pathological autoimmunity may be associated with fundamental alterations in the dynamics of natural antibody (ab) expression. This was further investigated in the nonobese diabetic (NOD) mouse, an animal model for human Type I diabetes. Suppression of the early B cell development in the NOD mouse prevented the development of diabetes, suggesting a role for B cells/Igs in the development of diabetes in these mice. Furthermore, neonatal injections of polyclonal Ig preparations or single, monoclonal natural abs inhibited disease induction. The prevention of diabetes development by one such natural ab was demonstrated to be dependent on both the dose injected and the timing of administration. Studies of the B cell repertoire development in NOD mice, compared to normal mice, by DNA-sequence analyses of IgVH rearrangements utilising genes from the most D-proximal Vh family, Vh7183, supported the idea of an aberrant B cell repertoire in this mouse model. Thus, the adult NOD mouse retained a neonatal pattern of Vh7183 rearrangements. This pattern could, however, be "normalised" by neonatal injection of a natural antibody, previously demonstrated to prevent the development of T cell dependent autoimmunity in the NOD mouse.

  • 44.
    Andresen, Liis
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Tenson, Tanel
    Hauryliuk, Vasili
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.
    Cationic bactericidal peptide 1018 does not specifically target the stringent response alarmone (p)ppGpp2016Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, 36549Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The bacterial stringent response is a key regulator of bacterial virulence, biofilm formation and antibiotic tolerance, and is a promising target for the development of new antibacterial compounds. The intracellular nucleotide (p)ppGpp acts as a messenger orchestrating the stringent response. A synthetic peptide 1018 was recently proposed to specifically disrupt biofilms by inhibiting the stringent response via direct interaction with (p) ppGpp (de la Fuente-Nunez et al. (2014) PLoS Pathogens). We have interrogated the specificity of the proposed molecular mechanism. When inhibition of Pseudomonas aeruginosa planktonic and biofilm growth is tested simultaneously in the same assay, peptides 1018 and the control peptide 8101 generated by an inversion of the amino acid sequence of 1018 are equally potent, and, importantly, do not display a preferential activity against biofilm. 1018 inhibits planktonic growth of Escherichia coli equally efficiently either when the alleged target, (p) ppGpp, is essential (MOPS media lacking amino acid L-valine), or dispensable for growth (MOPS media supplemented with L-valine). Genetic disruption of the genes relA and spoT responsible for (p) ppGpp synthesis moderately sensitizes-rather than protects-E. coli to 1018. We suggest that the antimicrobial activity of 1018 does not rely on specific recognition of the stringent response messenger (p) ppGpp.

  • 45.
    Andresen, Liis
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Varik, Vallo
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.
    Tozawa, Yuzuru
    Jimmy, Steffi
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Lindberg, Stina
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Tenson, Tanel
    Hauryliuk, Vasili
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.
    Auxotrophy-based High Throughput Screening assay for the identification of Bacillus subtilis stringent response inhibitors2016Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, 35824Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The stringent response is a central adaptation mechanism that allows bacteria to adjust their growth and metabolism according to environmental conditions. The functionality of the stringent response is crucial for bacterial virulence, survival during host invasion as well as antibiotic resistance and tolerance. Therefore, specific inhibitors of the stringent response hold great promise as molecular tools for disarming and pacifying bacterial pathogens. By taking advantage of the valine amino acid auxotrophy of the Bacillus subtilis stringent response-deficient strain, we have set up a High Throughput Screening assay for the identification of stringent response inhibitors. By screening 17,500 compounds, we have identified a novel class of antibacterials based on the 4-(6-(phenoxy) alkyl)-3,5-dimethyl-1H-pyrazole core. Detailed characterization of the hit compounds as well as two previously identified promising stringent response inhibitors-a ppGpp-mimic nucleotide Relacin and cationic peptide 1018 - showed that neither of the compounds is sufficiently specific, thus motivating future application of our screening assay to larger and more diverse molecular libraries.

  • 46. Annicotte, Jean-Sébastien
    et al.
    Fayard, Elisabeth
    Swift, Galvin H
    Selander, Lars
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Edlund, Helena
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Tanaka, Toshiya
    Kodama, Tatsuhiko
    Schoonjans, Kristina
    Auwerx, Johan
    Pancreatic-duodenal homeobox 1 regulates expression of liver receptor homolog 1 during pancreas development.2003Inngår i: Molecular and Cellular Biology, ISSN 0270-7306, E-ISSN 1098-5549, Vol. 23, nr 19, 6713-6124 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Liver receptor homolog 1 (LRH-1) and pancreatic-duodenal homeobox 1 (PDX-1) are coexpressed in the pancreas during mouse embryonic development. Analysis of the regulatory region of the human LRH-1 gene demonstrated the presence of three functional binding sites for PDX-1. Electrophoretic mobility shift assays and chromatin immunoprecipitation analysis showed that PDX-1 bound to the LRH-1 promoter, both in cultured cells in vitro and during pancreatic development in vivo. Retroviral expression of PDX-1 in pancreatic cells induced the transcription of LRH-1, whereas reduced PDX-1 levels by RNA interference attenuated its expression. Consistent with direct regulation of LRH-1 expression by PDX-1, PDX-1(-/-) mice expressed smaller amounts of LRH-1 mRNA in the embryonic pancreas. Taken together, our data indicate that PDX-1 controls LRH-1 expression and identify LRH-1 as a novel downstream target in the PDX-1 regulatory cascade governing pancreatic development, differentiation, and function.

  • 47.
    Antonsson, Åsa
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Hughes, Kate
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Edin, Sofia
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Grundström, Thomas
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Regulation of c-Rel Nuclear Localization by Binding of Ca2+/Calmodulin2003Inngår i: Molecular and Cellular Biology, ISSN 0270-7306, E-ISSN 1098-5549, Vol. 23, nr 4, 1418-1427 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The NF-κB/Rel family of transcription factors participates in the control of a wide array of genes, including genes involved in embryonic development and regulation of immune, inflammation, and stress responses. In most cells, inhibitory IκB proteins sequester NF-κB/Rel in the cytoplasm. Cellular stimulation results in the degradation of IκB and modification of NF-κB/Rel proteins, allowing NF-κB/Rel to translocate to the nucleus and act on its target genes. Calmodulin (CaM) is a highly conserved, ubiquitously expressed Ca2+ binding protein that serves as a key mediator of intracellular Ca2+ signals. Here we report that two members of the NF-κB/Rel family, c-Rel and RelA, interact directly with Ca2+-loaded CaM. The interaction with CaM is greatly enhanced by cell stimulation, and this enhancement is blocked by addition of IκB. c-Rel and RelA interact with CaM through a similar sequence near the nuclear localization signal. Compared to the wild-type protein, CaM binding-deficient mutants of c-Rel exhibit increases in both nuclear accumulation and transcriptional activity on the interleukin 2 and granulocyte macrophage colony-stimulating factor promoters in the presence of a Ca2+ signal. Conversely, for RelA neither nuclear accumulation nor transcriptional activity on these promoters is increased by mutation of the sequence interacting with CaM. Our results suggest that CaM binds c-Rel and RelA after their release from IκB and can inhibit nuclear import of c-Rel while letting RelA translocate to the nucleus and act on its target genes. CaM can therefore differentially regulate the activation of NF-κB/Rel proteins following stimulation.

  • 48.
    Antti, Henrik
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Fahlgren, Anna
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Näsström, Elin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Kouremenos, Konstantinos
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Sundén-Cullberg, Jonas
    Guo, Yongzhi
    Moritz, Thomas
    Wolf-Watz, Hans
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Johansson, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Infektionssjukdomar.
    Fällman, Maria
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Metabolic profiling for detection of staphylococcus aureus infection and antibiotic resistance2013Inngår i: PLoS ONE, ISSN 1932-6203, Vol. 8, nr 2, e56971- s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Due to slow diagnostics, physicians must optimize antibiotic therapies based on clinical evaluation of patients without specific information on causative bacteria. We have investigated metabolomic analysis of blood for the detection of acute bacterial infection and early differentiation between ineffective and effective antibiotic treatment. A vital and timely therapeutic difficulty was thereby addressed: the ability to rapidly detect treatment failures because of antibiotic-resistant bacteria. Methicillin-resistant (MRSA) and methicillin-sensitive (MSSA) were used and for infecting mice, while natural MSSA infection was studied in humans. Samples of bacterial growth media, the blood of infected mice and of humans were analyzed with combined Gas Chromatography/Mass Spectrometry. Multivariate data analysis was used to reveal the metabolic profiles of infection and the responses to different antibiotic treatments. experiments resulted in the detection of 256 putative metabolites and mice infection experiments resulted in the detection of 474 putative metabolites. Importantly, ineffective and effective antibiotic treatments were differentiated already two hours after treatment start in both experimental systems. That is, the ineffective treatment of MRSA using cloxacillin and untreated controls produced one metabolic profile while all effective treatment combinations using cloxacillin or vancomycin for MSSA or MRSA produced another profile. For further evaluation of the concept, blood samples of humans admitted to intensive care with severe sepsis were analyzed. One hundred thirty-three putative metabolites differentiated severe MSSA sepsis (n = 6) from severe sepsis (n = 10) and identified treatment responses over time. Combined analysis of human, , and mice samples identified 25 metabolites indicative of effective treatment of sepsis. Taken together, this study provides a proof of concept of the utility of analyzing metabolite patterns in blood for early differentiation between ineffective and effective antibiotic treatment in acute infections.

  • 49. Arencibia, I
    et al.
    Suárez, N C
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Wolf-Watz, H
    Sundqvist, K G
    Yersinia invasin, a bacterial beta1-integrin ligand, is a potent inducer of lymphocyte motility and migration to collagen type IV and fibronectin.1997Inngår i: Journal of Immunology, ISSN 0022-1767, E-ISSN 1550-6606, Vol. 159, nr 4, 1853-9 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Yersinia pseudotuberculosis invasin protein was found to be a potent inducer of pseudopodia formation and chemotactic and haptotactic migration in human T lymphocytes. Checkerboard analysis confirmed that migration was directional. The Yersinia invasin triggered migration of otherwise poorly migratory normal T cells on fibronectin and in particular on collagen type IV, and augmented the migration of leukemic T cell lines on these components. Invasin-induced lymphocyte migration was inhibited by staurosporin that selectively prevented pseudopodia formation but, noteworthy, augmented adhesion. The motogenic and attractant properties of invasin (Inv) were mediated via beta1-integrins, as shown by lack of effect of Inv on the motility of a beta1-integrin-negative lymphoid cell line and inhibition of invasin-induced lymphocyte motility by anti-beta1 Abs. Inv was markedly more effective than the extracellular matrix components fibronectin, collagen type IV, and laminin, which also interact with lymphocyte beta1-integrins, with respect to induction of pseudopodia, chemotaxis, and haptotaxis. Thus, Yersinia invasin is a model ligand for induction of lymphocyte motility via beta1-integrins. The extraordinary capacity of Inv to trigger and guide T lymphocyte motility and potentiate lymphocyte migration to extracellular matrix components may be of pathogenetic significance for the movement of lymphocytes to extraintestinal sites secondary to Yersinia infection.

  • 50. Arend, A
    et al.
    Aunapuu, M
    Masso, R
    Selstam, Gunnar
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Prostaglandins of the E-series inhibit connective tissue proliferation in the liver wound of the rat2005Inngår i: Annals of Anatomy, ISSN 0940-9602, E-ISSN 1618-0402, Vol. 187, nr 1, 57-62 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The present study was undertaken to relate wound heating of an internal organ to prostaglandins of the E and F series. A small liver wound was induced by a galvanic cauter via the abdominal route under general anesthesia and prostaglandin E-1, E-2 and F-2 alpha were injected twice daily at a dose of 250 mu g/kg. Proliferation of the connective tissue in the liver wound was estimated morphometrically 6 days after liver wound infliction. Levels of prostaglandins E-2 and F-2 alpha were measured in the liver wound as well as in normal liver tissue from adjacent lobes using radioimmunoassay. The results show that exogenous prostaglandins of the E-series suppress connective tissue proliferation. Three minutes after the last prostaglandin E-2 injection, high prostaglandin concentrations were measured both in the tiver wound and in the liver tissue of the adjacent lobe. Prostaglandin F-2 alpha injections had no effect on wound heating. We believe that the rat thermic liver wound model can be used for different studies on wound heating mechanisms and that prostaglandins of the E-series are involved in wound heating in the specific time period studied.

1234567 1 - 50 of 824
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf