Chemical pulping and bio-refining results in many fractions such as. tall oil and turpentine that contain substantial amounts of α-pinene and other terpenes. Today these fractions are usually burned in the recovery boilers. However, the northern forest industry, primarily utilizing the boreal forests, faces serious challenges from developing markets (South America, Asia), because of lower cost of raw material resources and labor. At the same time, there is a growing concern about emissions of greenhouse gases and security of supply connected to the use of fossil oil for transportation and as a feedstock for the chemical industry. The mentioned fact renders the substitution of petrochemical-related raw materials an important field of research.
The flavor and fragrance industry is one of the main users of terpene esters. From those esters, α-terpinyl and bornyl acetates are produced from α-pinene and commonly used for bath products and perfumes. Due to the imperfection of conventional two-stage production method of the mentioned esters, which lays in the equipment corrosion, environmental pollution, large load and nonrecyclability of a catalyst, the novel one-stage catalytic process is always of high priority.
The possibility of α-pinene liquid phase catalytic acetoxylation is introduced in the present study. The complex product distribution and reaction network analysis, influent reaction and catalytic factors optimization, combined with the reaction kinetic modeling were the main aims of research. The ion-exchange resin catalyst Amberlyst 70 was characterized as the catalyst used in the studied reaction and compared with the solvent-catalyzed mode. Valuable combinations of acetates were obtained for both studied modes. A wide range of process factors were studied in the batch (Parr) reactor used. The mentioned type of reactor is suitable for the consequent industrial operations scale-up calculations.