umu.sePublications
Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bartels, Pia
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Ask, Jenny
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF). Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Karlsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Science, Umeå University, Abisko, Sweden.
    Giesler, Reiner
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Science, Umeå University, Abisko, Sweden.
    Allochthonous Organic Matter Supports Benthic but Not Pelagic Food Webs in Shallow Coastal Ecosystems2018In: Ecosystems (New York. Print), ISSN 1432-9840, E-ISSN 1435-0629, Vol. 21, no 7, p. 1459-1470Article in journal (Refereed)
    Abstract [en]

    Rivers transport large amounts of allochthonous organic matter (OM) to the ocean every year, but there are still fundamental gaps in how allochthonous OM is processed in the marine environment. Here, we estimated the relative contribution of allochthonous OM (allochthony) to the biomass of benthic and pelagic consumers in a shallow coastal ecosystem in the northern Baltic Sea. We used deuterium as a tracer of allochthony and assessed both temporal variation (monthly from May to August) and spatial variation (within and outside river plume). We found variability in allochthony in space and time and across species, with overall higher values for zoobenthos (26.2 +/- 20.9%) than for zooplankton (0.8 +/- 0.3%). Zooplankton allochthony was highest in May and very low during the other months, likely as a result of high inputs of allochthonous OM during the spring flood that fueled the pelagic food chain for a short period. In contrast, zoobenthos allochthony was only lower in June and remained high during the other months. Allochthony of zoobenthos was generally higher close to the river mouth than outside of the river plume, whereas it did not vary spatially for zooplankton. Last, zoobenthos allochthony was higher in deeper than in shallower areas, indicating that allochthonous OM might be more important when autochthonous resources are limited. Our results suggest that climate change predictions of increasing inputs of allochthonous OM to coastal ecosystems may affect basal energy sources supporting coastal food webs.

    Download full text (pdf)
    fulltext
  • 2. Bartels, Pia
    et al.
    Cucherousset, Julien
    Gudasz, Cristian
    Jansson, Mats
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Karlsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Premke, Katrin
    Rubach, Anja
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Steger, Kristin
    Tranvik, Lars J.
    Eklov, Peter
    Terrestrial subsidies to lake food webs: an experimental approach2012In: Oecologia, ISSN 0029-8549, E-ISSN 1432-1939, Vol. 168, no 3, p. 807-818Article in journal (Refereed)
    Abstract [en]

    Cross-ecosystem movements of material and energy are ubiquitous. Aquatic ecosystems typically receive material that also includes organic matter from the surrounding catchment. Terrestrial-derived (allochthonous) organic matter can enter aquatic ecosystems in dissolved or particulate form. Several studies have highlighted the importance of dissolved organic carbon to aquatic consumers, but less is known about allochthonous particulate organic carbon (POC). Similarly, most studies showing the effects of allochthonous organic carbon (OC) on aquatic consumers have investigated pelagic habitats; the effects of allochthonous OC on benthic communities are less well studied. Allochthonous inputs might further decrease primary production through light reduction, thereby potentially affecting autotrophic resource availability to consumers. Here, an enclosure experiment was carried out to test the importance of POC input and light availability on the resource use in a benthic food web of a clear-water lake. Corn starch (a C-4 plant) was used as a POC source due to its insoluble nature and its distinct carbon stable isotope value (delta C-13). The starch carbon was closely dispersed over the bottom of the enclosures to study the fate of a POC source exclusively available to sediment biota. The addition of starch carbon resulted in a clear shift in the isotopic signature of surface-dwelling herbivorous and predatory invertebrates. Although the starch carbon was added solely to the sediment surface, the carbon originating from the starch reached zooplankton. We suggest that allochthonous POC can subsidize benthic food webs directly and can be further transferred to pelagic systems, thereby highlighting the importance of benthic pathways for pelagic habitats.

  • 3.
    Bartels, Pia
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Cucherousset, Julien
    Steger, Kristin
    Eklöv, Peter
    Tranvik, Lars J
    Hillebrand, Helmut
    Reciprocal subsidies between freshwater and terrestrial ecosystems structure consumer resource dynamics2012In: Ecology, ISSN 0012-9658, E-ISSN 1939-9170, Vol. 93, no 5, p. 1173-1182Article in journal (Refereed)
    Abstract [en]

    Cross-ecosystem movements of material and energy, particularly reciprocal resource fluxes across the freshwater-land interface, have received major attention. Freshwater ecosystems may receive higher amounts of subsidies (i.e., resources produced outside the focal ecosystem) than terrestrial ecosystems, potentially leading to increased secondary production in freshwaters. Here we used a meta-analytic approach to quantify the magnitude and direction of subsidy inputs across the freshwater-land interface and to determine subsequent responses in recipient animals. Terrestrial and freshwater ecosystems differed in the magnitude of subsidies they received, with aquatic ecosystems generally receiving higher subsidies than terrestrial ecosystems. Surprisingly, and despite the large discrepancy in magnitude, the contribution of these subsidies to animal carbon inferred from stable isotope composition did not differ between freshwater and terrestrial ecosystems, likely due to the differences in subsidy quality. The contribution of allochthonous subsidies was highest to primary consumers and predators, suggesting that bottom-up and top-down effects may be affected considerably by the input of allochthonous resources. Future work on subsidies will profit from a food web dynamic approach including indirect trophic interactions and propagating effects.

  • 4.
    Bartels, Pia
    et al.
    Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden.
    Hirsch, Philipp E.
    Svanbäck, Richard
    Eklöv, Peter
    Water Transparency Drives Intra-Population Divergence in Eurasian Perch (Perca fluviatilis)2012In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 8, p. e43641-Article in journal (Refereed)
    Abstract [en]

    Trait combinations that lead to a higher efficiency in resource utilization are important drivers of divergent natural selection and adaptive radiation. However, variation in environmental features might constrain foraging in complex ways and therefore impede the exploitation of critical resources. We tested the effect of water transparency on intra-population divergence in morphology of Eurasian perch (Perca fluviatilis) across seven lakes in central Sweden. Morphological divergence between near-shore littoral and open-water pelagic perch substantially increased with increasing water transparency. Reliance on littoral resources increased strongly with increasing water transparency in littoral populations, whereas littoral reliance was not affected by water transparency in pelagic populations. Despite the similar reliance on pelagic resources in pelagic populations along the water transparency gradient, the utilization of particular pelagic prey items differed with variation in water transparency in pelagic populations. Pelagic perch utilized cladocerans in lakes with high water transparency and copepods in lakes with low water transparency. We suggest that under impaired visual conditions low utilization of littoral resources by littoral perch and utilization of evasive copepods by pelagic perch may lead to changes in morphology. Our findings indicate that visual conditions can affect population divergence in predator populations through their effects on resource utilization.

    Download full text (pdf)
    fulltext
  • 5.
    Bartels, Pia
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
    Hirsch, Philipp
    Svanbäck, Richard
    Eklöv, Peter
    Dissolved organic carbon reduces habitat coupling by top predators in lake ecosystems2016In: Ecosystems (New York. Print), ISSN 1432-9840, E-ISSN 1435-0629, Vol. 19, no 6, p. 955-967Article in journal (Refereed)
    Abstract [en]

    Increasing input of terrestrial dissolved organic carbon (DOC) has been identified as a widespread environmental phenomenon in many aquatic ecosystems. Terrestrial DOC influences basal trophic levels: it can subsidize pelagic bacterial production and impede benthic primary production via light attenuation. However, little is known about the impacts of elevated DOC concentrations on higher trophic levels, especially on top consumers. Here, we used Eurasian perch (Perca fluviatilis) to investigate the effects of increasing DOC concentrations on top predator populations. We applied stable isotope analysis and geometric morphometrics to estimate long-term resource and habitat utilization of perch. Habitat coupling, the ability to exploit littoral and pelagic resources, strongly decreased with increasing DOC concentrations due to a shift toward feeding predominantly on pelagic resources. Simultaneously, resource use and body morphology became increasingly alike for littoral and pelagic perch populations with increasing DOC, suggesting more intense competition in lakes with high DOC. Eye size of perch increased with increasing DOC concentrations, likely as a result of deteriorating visual conditions, suggesting a sensory response to environmental change. Increasing input of DOC to aquatic ecosystems is a common result of environmental change and might affect top predator populations in multiple and complex ways.

  • 6. Huser, Brian
    et al.
    Bartels, Pia
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    The feeding ecology of carp2015In: Biology and ecology of carp / [ed] C. Pietsch and P.E. Hirsch, CRC Press, 2015, p. 217-243Chapter in book (Refereed)
  • 7.
    Olajos, Fredrik
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Bokma, Folmer
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Bartels, Pia
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Myrstener, Erik
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Rydberg, Johan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Öhlund, Gunnar
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Bindler, Richard
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Wang, Xiao-Ru
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Zale, Rolf
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Englund, Göran
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Estimating species colonization dates using DNA in lake sediment2018In: Methods in Ecology and Evolution, ISSN 2041-210X, E-ISSN 2041-210X, Vol. 9, no 3, p. 535-543Article in journal (Refereed)
    Abstract [en]
    1. Detection of DNA in lake sediments holds promise as a tool to study processes like extinction, colonization, adaptation and evolutionary divergence. However, low concentrations make sediment DNA difficult to detect, leading to high false negative rates. Additionally, contamination could potentially lead to high false positive rates. Careful laboratory procedures can reduce false positive and negative rates, but should not be assumed to completely eliminate them. Therefore, methods are needed that identify potential false positive and negative results, and use this information to judge the plausibility of different interpretations of DNA data from natural archives.
    2. We developed a Bayesian algorithm to infer the colonization history of a species using records of DNA from lake-sediment cores, explicitly labelling some observations as false positive or false negative. We illustrate the method by analysing DNA of whitefish (Coregonus lavaretus L.) from sediment cores covering the past 10,000 years from two central Swedish lakes. We provide the algorithm as an R-script, and the data from this study as example input files.
    3. In one lake, Stora Lögdasjön, where connectivity with the proto-Baltic Sea and the degree of whitefish ecotype differentiation suggested colonization immediately after deglaciation, DNA was indeed successfully recovered and amplified throughout the post-glacial sediment. For this lake, we found no loss of detection probability over time, but a high false negative rate. In the other lake, Hotagen, where connectivity and ecotype differentiation suggested colonization long after deglaciation, DNA was amplified only in the upper part of the sediment, and colonization was estimated at 2,200 bp based on the assumption that successful amplicons represent whitefish presence. Here the earliest amplification represents a false positive with a posterior probability of 41%, which increases the uncertainty in the estimated time of colonization.
    4. Complementing careful laboratory procedures aimed at preventing contamination, our method estimates contamination rates from the data. By combining these results with estimates of false negative rates, our models facilitate unbiased interpretation of data from natural DNA archives.
  • 8. Skulason, Skuli
    et al.
    Parsons, Kevin J.
    Svanback, Richard
    Räsänen, Katja
    Ferguson, Moira M.
    Adams, Colin E.
    Amundsen, Per-Arne
    Bartels, Pia
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Bean, Colin W.
    Boughman, Janette W.
    Englund, Göran
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Gudbrandsson, Johannes
    Hooker, Oliver E.
    Hudson, Alan G.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Kahilainen, Kimmo K.
    Knudsen, Rune
    Kristjansson, Bjarni K.
    Leblanc, Camille A-L.
    Jonsson, Zophonias
    Öhlund, Gunnar
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Smith, Carl
    Snorrason, Sigurdur S.
    A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems2019In: Biological Reviews, ISSN 1464-7931, E-ISSN 1469-185X, Vol. 94, no 5, p. 1786-1808Article, review/survey (Refereed)
    Abstract [en]

    A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well‐suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo feedbacks influencing the selective and developmental environments of the phenotype. We highlight empirical examples and present a conceptual model for the generation of resource polymorphism – emphasizing eco evo devo, and identify current gaps in knowledge.

    Download full text (pdf)
    fulltext
  • 9. Soininen, Janne
    et al.
    Bartels, Pia
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Heino, Jani
    Luoto, Miska
    Hillebrand, Helmut
    Toward More Integrated Ecosystem Research in Aquatic and Terrestrial Environments2015In: BioScience, ISSN 0006-3568, E-ISSN 1525-3244, Vol. 65, no 2, p. 174-182Article in journal (Refereed)
    Abstract [en]

    Aquatic and terrestrial ecosystems are tightly linked through the fluxes of organisms and matter. However, aquatic and terrestrial ecologists have mainly studied these ecosystems separately, a "splendid isolation" historically fostered by disciplinary boundaries between institutes and funding schemes. Here, we synthesize the progress made in joint aquatic and terrestrial research and suggest new approaches to meeting future research challenges in changing environments. Aquatic and terrestrial organisms use cross-system subsidies to a comparable extent and addressing reciprocal subsidies is therefore necessary in order to understand biodiversity and functioning of both aquatic and terrestrial ecosystems. We suggest that the metaecosystem framework could be expanded to explicitly consider cross-system fluxes of matter differing in magnitude and quality. We further advocate the inclusion of cross-system analyses at broader spatial extents, for which remote-sensing applications would be a useful tool in environmental research at the land-water interface. A cross-ecosystem approach would therefore be valuable for a more thorough understanding of ecosystem responses to various stressors in the face of rapid environmental change.

  • 10.
    Öhlund, Gunnar
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Peedu, Mikael
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Nilsson, Karin A.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Fallgren, Björn
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Magnusson, Martina
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Öhlund, Sven-Ola
    Bartels, Pia
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Hein, Catherine L.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Bodin, Mats
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Englund, Göran
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    The chronology of incipient speciation in whitefishManuscript (preprint) (Other academic)
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf