
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at The Sixth Swedish Language Technology
Conference (SLTC) Umeå University, 17-18 November, 2016.

Citation for the original published paper:

Minock, M. (2016)
Using HOL Light to Reason over Second-Order MRLs.
In:

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-144607

Using HOL LIGHT to Reason over
Higher-Order Meaning Representation Languages

Michael Minock

TCS/CSC
KTH Royal Institute of Technology

minock@kth.se

Abstract
This extended abstract presents some very preliminary work exploring higher-order meaning representation languages (MRLs)
for natural language interfaces over databases. Specifically the HOL LIGHT theorem prover is being applied to test query
containment for a language that uses sub-queries to compute counts, a key step toward covering MRLs as powerfull as SQL.
While the deduction method is, by definition, sound, it can not be complete. Still, on a containment corpus derived from
GEOQUERY, the prover is managing to deduce or refute many query containments automatically without interaction. Work is
underway to supply additional theorems, that when added to the stock of available theorems, will automatically solve a broader
and broader class of containment problems. It will be interesting to see how practical this approach can be made.

1. Introduction
In reviewing natural language interface efforts of the 1980s,
(Copestake and Sparck Jones, 1990) observed that even
simple domains require highly expressive MRLs. At
roughly the same time the argument was put forth on the
need to be able to decide logical equivalence between arbi-
trary MRL expressions (Shieber, 1993) 1. This continues to
presents something of a quandary.

Our position is to pursue expressive semantics rather than
decidable inference, although we acknowledge the clear de-
sirability of the later (Minock, 2014). As for how expres-
sive, ultimately we desire an MRL roughly as expressive
as SQL with its aggregation and grouping operators and
its flexibility to use sub-query results in conditions. How-
ever since we aim to perform logical analysis (e.g. deter-
mine query containment, equivalence, etc.), we prefer the
clean syntax and semantics of higher-order logic (Ender-
ton, 2015) over the arguably grubby syntax and informal
semantics of SQL.

The overarching question we are exploring is ‘to what ex-
tent can higher-order reasoners be used practically in infer-
ence problems over relational databases?’ This is a broad
and ambitions undertaking, thus, for now, we limit our-
selves to a queries and sub-queries computing just counts.
If we meet with success on this class of queries we will try
to extend solutions to more complex aggregation functions
(e.g. averages, sums, etc). Ultimately we aim to compute
containment, equivalence disjointness problems for general
SQL.

2. Queries with cardinalities over sets
The syntax and semantics we use is standard. The logic
looks exactly like first order logic with the addition of 1-
place predicate variables which range over sets of objects.
We also use a special cardinality function |X| indicating the

1In short, this gives a principled way to resolve spurious am-
biguity during analysis and also gives the capability of generating
equivalent natural language paraphrases of equivalent logical ex-
pressions.

cardinality of sets. Here we present2 some example queries
over the GEOQUERY corpus database (figure 1) paired with
expressions in our higher-order query language:

Figure 1: Part of GEOQUERY schema.

1. “give me the cities in virginia”:

{(x)|City(x, ‘Virginia’)}

This query is a simple first-order expression which
builds a set of 1-tuples for bindings of variable x.

2. “how many cities are in montana”:

{(|X|)|(∀x)(X(x)↔ City(x, ‘Montana’))}

This query returns the single tuple giving the size of
the set X which is exactly the cities in Montana.

3. “what states have more cities than ohio”

{(x)|State(x, ,) ∧ (∃Y)(∃Z)
((∀y)(Y (y)↔ City(y, x)∧
(∀z)(Z(z)↔ City(z, ‘Ohio’)) ∧ |Y | > |Z|)}

This query, by introducing sets of cities in Ohio and
sets of cities in the free variable of the query, can, via
> on the sizes of the sets, determine which states have
more cities than Ohio.

4. “What state has the most cites”

2To shorten the expressions we use don’t care existential vari-
ables ().

{(x)|State(x, ,)∧
(∃Y)(∀y)(Y (y)↔ City(y, x)∧
¬(∃w)(∃Z)(∀z)(Z(z)↔ City(z, w) ∧ |Y | < |Z|))}

This query introduces a not exists over a set variable.

5. “States where the majority of cities are less than
10,000 people.”

{(x)|State(x, ,)∧
(∃Y)(∃Z)(

(∀y)(Y (y)↔ (∃p)(City(y, x, p) ∧ p < 10000))∧
(∀z)(Z(z)↔ (∃p)(City(z, x, p) ∧ p ≥ 10000))∧
|Y | > |Z|)}

This query shows that generalized quantifiers(Barwise
and Cooper, 1981) like majority are expressible within
our MRL3.

Given a database state D and a query Q of the above form,
answers Q(D) are computable; it is straight forward to map
such queries to SQL with sub-queries computing counts.
What is difficult is deciding things like query containment
and thus by extension equivalence. Our focus is to auto-
matically determine containment for as large a class of for-
mulas as possible.

3. Using HOL LIGHT to decide query
containment

The theorem prover we use is HOL LIGHT (Harrison,
2009), one of the descendants of the original HOL system
of Gordon (Gordon, 1991). We picked HOL LIGHT be-
cause it seemed to be the easiest interactive higher-order
logic theorem prover to install, comprehend and use.

Our method of testing if query Q2 contains query Q1 is to
prepare the sentence Σ ⇒ (Q1 ⇒ Q2) where Σ expresses
the relevant database constraints and the unique names as-
sumption for the constants in Q1 and Q2. If HOL LIGHT
can prove the validity of this sentence, then containment
holds4. If HOL LIGHT does not return a theorem express-
ing the input sentence within a certain time span, then we
conclude that the containment does not hold.

4. Initial Observations
To test our containment checker, we are constructing a cor-
pus of containment problems over GEOQUERY augmented
with the number of 2016 electoral college votes per state.
This consists of two files. The first is an SQL schema
and set of SQL INSERT statements to build a plain SQL
database state. The second file, encoded in XML, repre-
sents a set of problems. Each problem consists of a rep-
resentation of the assumptions, antecedent and consequent
and a determination of whether the consequent relationship
holds or does not hold. These ’representations’ are encoded
in natural language, higher-order logic and SQL. A part of

3Note that we extended the vocabulary in figure 1 to include
city populations just to support this example.

4If the arities of the answer tuples of Q1 and Q2 are not equal,
then we simply determine that query containment does not hold.

this corpus is drawn from traces of our replication and ex-
tension of PRECISE (Popescu, et. al., 2003) as it attempted
to simplify returned query sets. We are also adding addi-
tional problems that more extensively exercise the higher-
order capabilities of our MRL. It is not difficult to come up
with very challenging problems. Just a slight extension of
our language to allow for constant multiplication in cardi-
nality expressions would let us state things like, “there are
two times as many rivers in Ohio than in Nebraska”. Given
such an extension we can easily pose problems on the cusp
of being in or outside of Simpson’s paradox – hard prob-
lems indeed. Our goal is to systematically add a range of
problems from easy to practically impossible to our corpus.

As it stands now, our prover correctly solves all queries
in our corpus that only require first order reasoning. We
are still trying to find counter examples, but it seems that
the model elimination prover in HOL LIGHT is very much
up to the task. We add simple numerical constraints to the
proofs via HOL LIGHT’s ARITH_RULE function. Deter-
minations of answer set size constraints in count queries
(e.g. query 2 above) are also being correctly solved; us-
ing the theorem CARD_SUBSET we can determine that the
number of cities in the Western States is always greater than
the answer to the query 2 above.

Our current focus now is getting the reasoner to dig into
set definitions. Currently we are manually constructing
simple higher order proofs for individual examples to get
a better insight into how to develop an automatic method.

5. Discussion
Recent work (Chatzikyriakidis and Luo, 2014; Mineshima,
et. al., 2015) uses the Coq proof assistant in natural lan-
guage inference – entailments, such as those given in the
FraCaS corpus (Cooper, et. al., 1994), are computed be-
tween natural language statements. Our work is focused
on determining formal query containment using a complex
MRL. Ultimately we would like for our MRL to be as ex-
pressive as full SQL.

Because one may reduce arbitrary Boolean first-order
logic (FOL) expressions to SQL, query containment and
equivalence of SQL expressions must, in general, be un-
decidable. While large query classes (what we refer to
as MRLs) are decidable for containment and thus equiva-
lence5, we see such MRLs as too limited for natural lan-
guage interfaces. We thus pursue the sound, though in-
complete approach proposed in this extended abstract and
encode problems in HOL LIGHT. Since humans can rea-
son over these types of problems, a person should be able
to prove such lines of reasoning and encode them in HOL
LIGHT theorems to further patch the system. Such theo-
rems need to be defined over general predicates so that the
patterns of reasoning developed in one domain are useful
to other domains. It will be interesting to see how practical
this approach can be made.

5For example MRLs limited to the select-project-join queries
have long been known to be decidable for containment (Abite-
boul, et. al., 1995). Many extensions preserved this, for exam-
ple, unions of conjunctive queries, conjunctive queries with built-
in predicates, conjunctive queries with inequalities, conjunctive
queries under constraints, etc.

References
S. Abiteboul, R. Viannu, and V. Hull. Foundations of

Database Systems. Addison Wesley, 1995.
J. Barwise and R. Cooper ”Generalized Quantifiers and

Natural Language”. Language and Philosophy, Vol. 4.
No.2,pp 159–219, 1981

S. Chatzikyriakidis and Z. Luo. Natural language inference
in Coq. Journal of Logic, Language and Information,
23(4):441480. 2014.

R. Cooper, R. Crouch, J. van Eijck, C. Fox, J. van Gen-
abith, J. Jaspers, H. Kamp, M. Pinkal, M. Poesio, S. Pul-
man. FraCaS: A Framework for Computational Seman-
tics. Deliverable, D6. 1994

A. Copestake and K. Sparck Jones. Natural language in-
terfaces to databases. The Natural Language Review,
5(4):225–249, 1990.

H. Enderton ”Second-order and Higher-order Logic”. The
Stanford Encyclopedia of Philosophy (Fall 2015 Edi-
tion), 2015

M. Gordon. Introduction to the HOL System. Proceedings
of the 1991 International Workshop on the HOL Theorem
Proving System and its Applications, Davis, California
1991

J. Harrison. HOL Light: An Overview. In 22nd Interna-
tional Conference on Theorem Proving in Higher Order
Logics , Munich 2009.

K. Mineshima, P. Martı́nez-Gómez, Y. Miyao and D. Bekki
Higher-order logical inference with compositional se-
mantics In Empirical Methods in Natural Language Pro-
cessing Lisbon, 2015.

M. Minock. In pursuit of decidable ’logical form’. In
Swedish Language Technology Conference (SLTC), Up-
psala, 2014.

A. Popescu, O. Etzioni, and H. Kautz. Towards a theory
of natural language interfaces to databases. In Intelligent
User Interfaces, 2003.

S. Shieber. The problem of logical-form equivalence.
Computational Linguistics, 19(1):179–190, 1993.

