ÄR EN GOD NATTS SÖMN VÄRD ATT OFFRA MOT HÖGRE AVKASTNING?

En studie om sin stocks och dess avkastning

Gustav Magnusson, Erik Åström
Sammanfattning

Problemformulering: Vilken riskjusterad avkastning ger sin stocks över tid?

Teori: Studien behandlar teorin om riskjusterad avkastning för sin stocks överstiger avkastningen för index på grund av försommelse-effekten, dvs. att sin stocks väljs bort och således får en underprissättning.

Förord

Den här uppsatsen är skriven under vårterminen 2019 på Handelshögskolan vid Umeå Universitet. Uppsatsen är den avslutande delen av de båda författarnas utbildning och sista skrivelsen för deras Civilekonomexamen.

Umeå, 2019-05-24

Gustav Magnusson
E-post: gu.magnusson96@gmail.com

Erik Åström
E-post: astrom_erik@hotmail.com
Innehåll
1. Inledning... 1
 1.1 Problembakgrund ... 2
 1.2 Problemdiskussion.. 3
 1.3 Problemformulering ... 3
 1.4 Syfte ... 3
 1.5 Teoretiskt och praktiskt bidrag .. 4
 1.6 Avgränsningar .. 4

2. Metodologi .. 6
 2.1 Personlig bakgrund .. 6
 2.2 Kunskapssyn ... 6
 2.3 Vetenskapligt synsätt och perspektiv .. 7
 2.4 Angreppssätt ... 7
 2.5 Kvantitativ metod ... 8
 2.6 Litteratursökning .. 8
 2.7 Källkritik .. 9

3. Litteraturgenomgång ... 10
 3.1 Tidigare studier... 10
 3.1.1 Modeller i utförda studier .. 12
 3.2 Definition av sin .. 13
 3.2.1 Alkohol .. 14
 3.2.2 Bettingbolag .. 14
 3.2.3 Tobak ... 14
 3.2.4 Vapen .. 15
 3.3 Exkluderingslistan hos svenska banker & fondbolag ... 15
 3.4 Exkluderade branscher ... 15
 3.4.1 Vuxenunderhållning .. 16
 3.4.2 Gas & olja ... 16
 3.4.3 Övriga oetiska bolag ... 16
 3.5 Hypoteser ... 17
 3.6 Sammanfattning ... 17

4. Metod ... 19
 4.1 Forskningsdesign - observation eller experiment ... 19
 4.2 Urval & data .. 19
 4.3 Datainsamlingsmetod ... 25
4.4 Analysmetod .. 25
4.4.1 CAPM ... 25
4.4.2 Fama & French three factor model ... 26
4.4.3 Uppdelning av insamlad data .. 27
4.4.4 Tillvägagångssätt för analys .. 28
4.5 Robusthetstest .. 28
4.6 Riskfria räntan ... 29
4.7 Klassiska antaganden för regressionsmodeller 29
4.7.1 Förtydliganden av de klassiska antagandena enligt Studenmund (2014) ... 29
4.8 Förklaring av regressionens beståndsdelar 31
5. Resultat ... 34
5.1 Beskrivande statistik ... 34
5.2 Regressioner utifrån geografi .. 35
 5.2.1 Världen - Fama French, Newey-West ... 36
 5.2.2 Svarta listan - Fama French, Robust-test 36
 5.2.3 Europa - Fama French, Robust-test .. 37
 5.2.4 USA - Fama French, Newey-West ... 38
 5.2.5 Sverige - Fama French, Robust-test .. 38
5.3 Regressioner utifrån bransch .. 39
 5.3.1 Alkohol - Fama French, Robust-test ... 39
 5.3.2 Betting - Fama French, Robust-test ... 39
 5.3.3 Tobak - Fama French, Robust-test ... 40
 5.3.4 Vapen - Fama French, Robust-test ... 40
5.4 Sammanställning av regressionerna .. 41
 5.4.1 Sammanställning av årlig överavkastning 42
 5.4.2 CAPM-regressioner ... 42
 5.4.3 Fama French-regressioner .. 43
 5.4.4 Illustration av avkastning .. 43
5.5 Regressionsdiagnostik ... 45
5.6 Hypotesprövning ... 46
5.7 Robusthetstest - resultat ... 47
6. Analys ... 49
6.1 Regionindelning .. 49
6.2 Branschindelning ... 50
6.3 Svarta listan .. 51
7. Diskussion .. 52
8. Slutsats ... 55
8.1 Överavkastning eller inte... 55
8.2 Framtida forskning ... 56
9. Sanningskriterier... 58
 9.1 Validitet .. 58
 9.2 Reliabilitet .. 59
 9.3 Generaliserbarhet ... 59
10. Källförteckning ... 61
Appendix 1 - Regressioner .. 65
1. Inledning

I denna studie kommer vi göra en världsstudie om sin stocks och hur dess avkastning förhåller sig till jämförsbart index, något som representerar den genomsnittliga avkastningen för marknaden. Även om sin stocks kan anses som oetiska och att investerare bör undvika dessa, anser denna studie att investerare förtjänar att veta avkastningen av vad de eventuellt väljer bort. Detta grundar sig på att investerares investeringsbeslut är kulturellt betingade och kan leda till en varierande syn på oetiska affärer, som kan variera beroende på faktorer som kultur och hemland för den enskilde investeraren (Hofstede. 1983 s. 47).

när de köper aktier och undviker etiskt tvivelaktiga verksamheter, trots att de inte vet vad ett sådant val betyder för deras avkastning.

Studien ämnar således att försöka få en siffra på vad avkastningen är för sin stocks i förhållande till dess risk. Denna siffra skulle om den var positiv, dvs. högre än den genomsnittliga avkastningen för marknaden (jämförelsebart index), vore det en ekonomisk fördel att investera i sin stocks. Om siffran är negativ finns det en ekonomisk fördel att välja bort sin stocks från sin investeringsstrategi. Om det finns en skillnad i avkastning och i så fall dess storlek råder det fortfarande delade meningar om från tidigare forskning och denna studie hoppas kunna belysa om den är positiv eller negativ och även dess eventuella storlek.

1.1 Problembakgrund

Det har skett en ökning i intresse för att investera i hållbara alternativ (Sifo, 2016). Utifrån en sifo undersökning är det högre avkastning, positiv miljöpåverkan och att investerare inte vill investera i oetiska bolag som är de viktigaste valet som leder till en hållbar investering (Sifo, 2016). Men för att välja etiska alternativ måste varje person utgå från sina egna värddingar för att avgöra vad denne tycker är oetiskt. En del fondbolag har fonder som är utformade utifrån bankens normer och har valt att kalla de för Etiska fonder. Man kan tydligt se en trend där hållbarheten har hamnat i fokus, men det pratas lite om vad man som investerare faktiskt väljer bort. Hur stor skillnad i avkastning är det mellan etiska och oetiska alternativ är något som måste utredas bättre. Detta så investerare får konkreta siffror för avkastning om de väljer bort vissa alternativ framför andra, om oetiska alternativ skulle presterera bättre. Med andra ord, vad är kostnaden för att välja mer etiska alternativ att investera sitt kapital i?

Om investerare ska söka sig till hållbarare placeringar bör de förutom att få ett gott samvete även få chansen att veta alternativkostnaden av den investeringen, med andra ord avkastningen från de investeringar de väljer att avstå från. Beroende på vems perspektiv man tittar från kan synen på olika värden variera beroende på kultur (Hofstede, 1983 s. 47), vad studien väljer att utgå från om kan anses som sin stocks kommer att specificeras mer ingående längre fram.

I tidigare studier har ett genomgående tema varit att se aktier inom alkohol-, tobak- samt bettingbranschen som sin stocks (Fabozzi et al., 2008; Hong & Kacperczyk, 2009; Liston & Soydemir, 2010; Lobe & Walkshäusl, 2016; Kim & Venkatachalam, 2011). Vissa studier har även inkluderat företag verksamma inom vuxenunderhållning (Fabozzi et al., 2008; Lobe & Walkshäusl, 2016; Kim & Venkatachalam, 2011), vissa har inkluderat företag inom vapenindustrin (Fabozzi et al., 2008; Lobe & Walkshäusl, 2016). Det alla dessa branscher har gemensamt är att de enligt sociala normer kan anses som etiskt
tvivelaktiga. För denna studie undersöks ett urval av börsnoterade aktier som verkar inom alkohol-, tobak-, betting- samt vapenindustrin.

Handelsbanken skriver att de, i vissa fonder, väljer att inte investera i branscher som alkohol, tobak, vuxenunderhållning, kontroversiella vapen samt hasardspel (Handelsbanken, u.ä.). Swedbank Robur har valt att inte inkludera företag som verkar inom illegala vapen, tobak och kol i någon av deras fonder (Swedbank, 2018). Swedbank har en lista med företag som de väljer att inte inkludera i sina fonder. Det händer att fondförvaltare publicerar dessa typer av listor och vi har valt att kalla en sådan lista för “svarta listan”.

I de tidigare studier som vi har tittat på har samtliga skapat sitt urval utefter etiskt tvivelaktiga industrier. I vår studie har vi valt att undersöka dels om företag inom dessa industrier genererar en överavkastning och även valt att undersöka de företag som förekommer på olika svarta listor. Vi har valt detta tillvägagångssätt då vi dels vill se om aktier som ses som oetiska genererar en överavkastning och även undersöka om de företag som faktiskt blir exkluderade av institutioner genererar en överavkastning. Genom att inkludera de företag som är med på olika svarta listor, som faktiskt har blivit exkluderade från investeringar, hoppas vi kunna bidra till forskningen med data som inte undersöks tidigare, vilket gör denna studie unik i sitt slag.

1.2 Problemdiskussion

1.3 Problemformulering
Vilken riskjusterad avkastning ger sin stocks över tid?

1.4 Syfte
Studiens huvudsyfte är att granska om sin stocks runt om i världen kan generera en överavkastning. Vi kommer att dela in detta huvudsyfte i två delsyften. Det första delsyftet är att redogöra utifrån syndfulla industrier om aktier som ses som syndfulla
genererar en signifikant överavkastning eller underavkastning. Om detta är fallet kommer även en kartläggning att genomföras för att se vilka regioner i världen som ger högst respektive lägst överavkastning. En kartläggning kommer även att göras för att se vilka branscher som ger högst respektive lägst överavkastning eller underavkastning. Det andra delsyftet är att undersöka vilka aktier som stora svenska institutioner väljer att inte investera i och därefter testa om dessa aktier genererar en överavkastning eller underavkastning. Det första delsyftet är mer lika de tidigare studierna och ämnar till att undersöka aktier som ses som syndfulla då de verkar i syndfulla industrier. Det andra delsyftet skiljer sig då det undersöker aktier som vi vet har blivit exkluderade.

Delsyfte 1
Överavkastar sin stocks tillhör oetiska branscher?

Delsyfte 2
Överavkastar de uteslutna bolag som finns i de svarta listorna?

Figur 1. Grafisk bild av syftets utformning och huvudsyftets delning mellan 2 delsyften

1.5 Teoretiskt och praktiskt bidrag

1.6 Avgränsningar
Då hela världen har olika aktiemarknader samt olika kulturer med varierande syn på vad som är en sin stock har det funnits ett behov att förtydliga urvalet, så det blir tydligt vilka branscher som inkluderas i den här studien. Vi har därför valt att fokusera på länderna som en annan studie skriven av Lobe & Walkshäusl (2016) har valt att använda, vilket tillsammans representerar ett urval för hela världen. Lobe & Walkshäusl (2016) har i deras studie gjort ett världsurvalet, men då deras urval är gjort tidigare än den här studien hade urvalet och inkluderade länder kunnat variera. För att hålla denna studie...
jämförelsebar med Lobe & Walkshäusl´s (2016) studie, har vi valt att inkludera samma länder i vårt urval. Vi har även valt att excludera marknader som vuxenunderhållning då dessa bolag i liten utsträckning finns börsnoterade. Vi har även valt att excludera bolag som utför djurförsök med deras produkter, detta då denna information inte alltid finns allmän och det kan vara svårt att hitta börsnoterade bolag som öppet erkänner att de sysslar med djurförsök.

En ytterligare begränsning är att studien inte beräknat egna high minus low (HML) & small minus big (SMB) faktorer för Fama French three modellen, utan dessa inhämtas från en extern källa för varje enskild sindex. Dessa faktorer används i regressionerna och förtydligas under kapitel 4.4.2 Fama French three factor model.

De branscher som kommer att definieras som sin stocks i denna studie är alkohol-, betting-, tobak- och vapen-branschen. Dessa branscher har valts ut då de förekommit i ett flertal tidigare studier (Fabozzi et al., 2008; Lobe & Walkshäusl, 2016). Fler branscher har inte inkluderats då de inte finns specificerade i den branschklassificering som vi har valt att använda. Information om denna klassificering under rubriken 4.2 Urval & data. Vuxenunderhållning en bransch vars inkludering har diskuterats men dessa företag klassas ofta inom hotellbranschen vilket gör det svårt inkludera i studien.
2. Metodologi

För att studien ska bli utförd så korrekt som möjligt och samtidigt kunna få ett resultat som kan jämföras med tidigare studier, har studien valt liknande metodologi som tidigare studier. Studien kommer liksom dessa använda kvantitativ metod och ett deduktivt angreppssätt. Med det menas att vi kommer samla in kvantitativa data om aktier på valda marknader i form av kursutveckling inklusive utdelningar, även känt som return index över tid och eventuell annan relevant data. Efter datainsamlingen kommer vi utifrån tidigare forskning och teorier ställa upp hypoteser för att empiriskt pröva dem. Detta görs för att besvara problemformuleringen: Vilken riskjusterad avkastning ger sin stocks över tid i förhållande till index?

2.1 Personlig bakgrund
Båda författarna har läst vid Umeå universitet och gemensamt läst Civilekonomiprogrammet med inriktning handel & logistik. Som inriktning på D-nivå har de båda läst med inriktningen finans. Båda författarna har ett aktieintresse som hobby, men har inte fördjupat sig specifikt i sin stocks innan studiens genomförande.

2.2 Kunskapssyn
Kunskapssyn för ett område kan förklaras genom epistemologi, som avgör den kunskap som är godtagbar för det valda ämnet som ska efterforskas. Det finns enligt Bryman & Bell (2011, s. 16) två fundamentala vetenskapliga förhållningssätt, positivismen och hermeneutiken att förhålla sig till. Om man söker ännu djupare i litteratur inom området finns det positivism, realism, interpretivism & pragmatism (Saunders et al., 2009, s. 108).

Exempelvis är hermeneutiken en term som dras från teologin och behandlar samhällsvetenskaplig teori och metod för tolkning av mänskligt beteende (Bryman & Bell, 2011, s. 16). Positivism finns på den andra sidan spektrumet och är en epistemologisk position som förespråkar tillämpningen av metoder för studier av social verklighet (Saunders, et al., 2009, s. 108). Bryman & Bell (2011, s. 16) menar att positivismen följer följande fem principer:

1. Endast observerade fenomen och bekräftad kunskap kan anses som vetenskap.
2. Syftet med teori är att skapa hypoteser som kan testas vetenskapligt.
4. Vetenskap ska utföras utan värderingar.
5. Att det finns en tydlig skillnad mellan vetenskapliga- och normativa uttalanden.

Denna studie ska i likhet med tidigare studier av författarna Lobe & Walkshäusl (2016) samt Hong & Kacperczyk (2009) vara så objektiva som möjligt och inte låta tolkningar ske från den sociala verkligheten. Därför har vi valt att använda den positivistiska kunskapssynen för att precis som tidigare studier uppnå en så bra och jämförelsebar analys som möjligt. Vi är medvetna om att definitionen av sin stocks ligger till grund för att tolka händelser, men har för att ha möjlighet att genomföra studien valt att definiera de branscher där hårda linjer finns att dra. Dessa kan göras genom att företagen har identifierats inom en enskild bransch där branschen som helhet anses som skadlig. Således är aktierna som ingår i dessa kategorier inte subjektivt valda, utan objektivt valda då tidigare forskning har påvisat de negativa effekter de har inom sina branscher som
exempelvis tillhandahåller produkter för rökning eller bidrar till en ökad alkoholkonsumtion hos konsumenter.

2.3 Vetenskapligt synsätt och perspektiv
Ontologiska frågeställningar kan genom att delas in i flera underkategorier redogöra för olika sätt om verkligheten orsakas av individuella aktörers handlingar eller genom en objektiv verklighet som alla individer får förhålla sig till (Bryman & Bell, 2011, s. 21). De två främst använda kategorierna av synsätt heter objektivism och konstruktionism, där objektivismen beskriver att sociala företeelser faktiskt finns och är beroende av sociala aktörer (Bryman & Bell, 2011, s. 21). Konstruktivismen menar att företeelser skapas kontinuerligt och är beroende av sociala aktörers samspe (Bryman & Bell, 2011, s. 21). För denna studie har det objektiva synsättet valts, detta dels då objektivismen säger att företeelser inte har någon påverkan av hur sociala aktörer agerar och det är även samma tillvägagångssätt som vi tolkat från tidigare studier inom ämnet. Detta då vi försöker se verkligheten som entydig, och ska inte genom subjektivism bero på iakttagaren vilket skulle leda till en mångtydig och relativ observation av verkligheten. Med detta menas att studien ska genomföras så objektivt som möjligt och låta siffrorna som beräknas tala för sig själva. Detta ligger till grund för att studien på ett objektivt sätt ska kunna genomföras och jämföras med tidigare studier.

Med ett objektivt synsätt menas i praktiken att studien kommer genom beräkningar kunna presentera siffror som visar förhållanden mellan sin stocks och index samt hur de presterar i förhållande till varandra. Denna typ av data kan anses som objektiv och bör således tolkas i linje med objektivismen. Utifrån datan som kommer presenteras kan dock individer gör subjektiva tolkningar/bedömningar, men dessa är individens egna och inte studiens. Med detta menas att studien endast granskar avkastningen för sin stocks men lämnar valet om det är attraktivt att investera i dessa i framtiden till den enskilda investeraren. På så vis lämnar studien inga rekommendationer för framtida investeringar, men kan visa vilken avkastning man har kunnat få om man investerat i sin stocks under den valda tidsperioden som studien granskar.

2.4 Angreppssätt
vår hypotes i empirin genom insamlandet av data. Detta då tidigare studier har använt samma angreppssätt och vi vill att denna studie och dess slutsatser ska kunna vara jämförbara med de tidigare studierna i så stor utsträckning som möjligt.

2.5 Kvantitativ metod

Det finns skillnader mellan kvantitativ och kvalitativ forskning då de har olika strategier för att inhämta data (Bryman & Bell, 2011, s. 614). Kvantitativ forskning bygger på "hård data", där man vänder sig till siffror för att försöka förklara eventuella samband eller fenomen (Bryman & Bell, 2011, s. 619). Kvalitativ forskning använder sig ofta av undersökningar och intervjuer där i detta fall investerares värderingar, normer och kulturer för en utvald grupp ska användas för att förklara fenomenet (Bryman & Bell, 2011, s. 620). Vi har därför valt att välja bort det kvalitativa angreppssättet, då vi inte undersöker investerares inställning mot sin stocks, utan endast om sin stocks överavkastar i förhållande till världsindex. Således hade eventuella enkäter som utreder investerares värderingar och inställning mot sin stocks varit orelevanta för denna studie, och har därför valts bort.

2.6 Litteratursökning

I vår litteratursökning har vi letat efter de mest aktuella studierna som behandlar sin stocks avkastning. Dessa studier har sedan genomgåtts och där har vi sett vilka andra studier de har refererat till. På detta sätt har vi kunnat följa forskningens utveckling. Vi ser denna metod som en fördel då vi har kunnat få en bra bild av vilka studier som är de mest omtalade, samt att vi har kunnat gå igenom eventuell kritik som har riktats mot vissa studier.
2.7 Källkritik

Vi anser att vi har i så god mån som möjligt uppfyllt dessa krav. De källor vi har använt i denna studie har varit från trovärdiga utgivare. Vi har även strävat efter att använda källor som flera tidigare studier har använt, detta då vi ser att många tidigare studier som har använt en källa som ett tecken på äkthet. Vi har även i så god mån som möjligt valt att använda den nyaste versionen av information som möjligt. De tidigare studier som vi har använt har vi kritiskt granskat innan informationen från studierna inkluderats i denna studie. Detta har bland annat gjorts genom att ställa olika studier mot varandra, detta för att få olika synvinklar på exempelvis slutsatser och teorier.
3. Litteraturgenomgång

I det här kapitlet kommer vi redogöra för tidigare forskning inom ämnet och hur denna studie förhåller sig till den tidigare forskningen. Vidare kommer vi definiera vad som kännetecknar en sin stock och vilka branscher studien kommer att använda sig av inom området sin stocks. Slutligen kommer kapitlet innehålla de branscher som studien valt att excludera och förklara varför de har excluderats.

3.1 Tidigare studier

Tabell 1. Sammanställning av tidigare studier

<table>
<thead>
<tr>
<th>Författare</th>
<th>Årtal</th>
<th>Period</th>
<th>Region</th>
<th>Urvalsstorlek</th>
<th>Performance measure</th>
<th>Resultat: Överavkastar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabozzi et al.</td>
<td>2008</td>
<td>1970-2007</td>
<td>Världen</td>
<td>267</td>
<td>Jensen’s Alpha</td>
<td>Ja</td>
</tr>
<tr>
<td>Hong & Kacperczyk</td>
<td>2009</td>
<td>1926-2006</td>
<td>USA</td>
<td>193</td>
<td>Jensen’s Alpha</td>
<td>Ja</td>
</tr>
<tr>
<td>Liston & Soydemir</td>
<td>2010</td>
<td>2001-2007</td>
<td>USA</td>
<td>N.A</td>
<td>Jensen’s Alpha (Sharpe ratio)</td>
<td>Ja</td>
</tr>
<tr>
<td>Lobe & Walkshäuls</td>
<td>2016</td>
<td>1995-2007</td>
<td>Världen</td>
<td>755</td>
<td>Jensen’s Alpha (Sharpe ratio)</td>
<td>Nej</td>
</tr>
<tr>
<td>Kim & Venkatachalam</td>
<td>2011</td>
<td>1988-2006</td>
<td>USA</td>
<td>117</td>
<td>Jensen’s Alpha</td>
<td>Ja</td>
</tr>
</tbody>
</table>

Mertons teori visar att företag som blir aktivt bortvalda av många investerare kan förväntas ge en högre avkastning i kompensation för den begränsade informationen relaterad till dess risk, då de har färre analytiker som belyser dess verksamhet. När
investerare aktivt undviker en aktie blir investerarbasen mindre vilket driver ner aktiepriset i förhållande till dess fundamentala värde. Med detta menas att en aktieägare betalar ett lägre pris för andelen i bolaget än vad andelen fundamentalt är värde, vilket i sin tur leder till en högre avkastning. Kim & Venkatachalam (2011, s. 417) undersöker om informationsrisk i form av sämre kvalité på sin stocks finansiella rapporter kan vara en anledning till dess överavkastning. Deras slutsats var dock motsägande då de kommer fram till att sin stocks finansiella rapporter var av bättre kvalité jämfört med deras kontrollgrupp (Kim & Venkatachalam, 2011, s. 440). Om man kopplar Kim & Venkatachalam’s resultat till det Merton säger, verkar det som att analytiker och stora investerares försommelse leder till mindre tillgänglig information men att den information som företagen själva publicerar är av generellt av bättre kvalité. Om den högre kvaliteten på informationen är för att kompensera för den bristfälliga mängden av information går att diskutera, detta är dock ingenting som vi kommer att vidare beröra i denna studie.

En av de mest kända artiklarna angående sin stocks är skriven av Hong & Kacperczyk (2009). Deras studie syftar till att undersöka sambandet mellan sociala normer och sin stocks i USA. Författarna menar att det finns en social norm som säger att man inte ska investera i företag inom syndfulla verksamheter. Författarna hittar en signifikant underprissättning av sin stocks i deras urval och de menar att detta beror på sociala normer som gör att institutionella investerare samt analytiker väljer bort sin stocks (Hong & Kacperczyk 2009, s. 35). Hong & Kacperczyk (2009, s. 17) har undersökt om sin stocks har en överavkastning genom att mätta avkastningen i portföljen som går lång i sin stocks och går kort i mer etiska jämförande aktier. Denna metod användes av Hong & Kacperczyk (2009) för att se hur avkastningen hos sin stocks påverkas av att de ses som oetiska. Genom att gå lång i oetiska aktier och kort i liknande etiska aktier hoppas man neutralisera effekter som har en påverkan på avkastning men som inte har med det etiska synsättet att göra. Någonting som kan önskas neutraliseras bort kan exempelvis vara en generell hög avkastning på marknaden.

Fabozzi et al. (2008) använder ett större urval i sin studie jämfört med Hong & Kacperczyk (2009). Han använder ett urval från 21 länder samt 6 olika oetiska branscher (Fabozzi et al., 2008, s. 86). Studiens resultat genererar en månatlig riskjusterad avkastning omfattande 0,96 % (Fabozzi et al., 2008, s. 89) detta går i linje med Hong & Kacperczyk (2009) resultat som även dem visade på en positiv riskjusterad avkastning. Fabozzi et al. (2008, s. 85) menar dels att det kostar ett företag pengar att hålla sig till etiska och sociala värden, vidare skriver han att oetiska branscher inte behöver följa dessa sociala normer, vilket kan vara en anledning till att dessa aktier genererar en överavkastning Fabozzi et al. (2008, s. 92-93). En annan anledning som författarna pekar på är att oetiska branscher är de mest reglerade, de svåraste att ta sig in i och mest övervakade. Branschernas prissättning är inte lika reglerad vilket gör att de företag som klarar av att driva en verksamhet inom dessa marknader kan ha möjlighet till monopolliknande avkastning (Fabozzi et al., 2008, s. 93).

Fabozzi et al. (2008) har i sin studie valt att inte gå lång i sin stocks och kort i jämförande mer etiska aktier, utan han har skapat portföljer och jämfört dessa med relevanta index. I och med att han har aktier från olika länder jämför han aktierna med marknadsindex för just det landet. Om en portfölj innefattar svenska sin stocks så jämförs denna portfölj med en index som speglar den svenska marknaden, exempelvis OMX30. För att beräkna om sin stocks genererar en överavkastning har Fabozzi et al. (2008) använt sig av två mått,
det ena har han tagit avkastningen av portföljen med sin stocks och subtraherat avkastningen från index, det andra måttet är riskjusterad avkastning uträknat från CAPM (Fabozzi et al., 2008, s. 90).

Flera författare har gjort enskilda test för de olika branscherna de inkluderar var för sig. Fabozzi et al. (2008, s. 90) kom fram till att samtliga de branscher som han tittat på genererade en signifikant överavkastning. Lobe & Walkshäuls (2016, s. 324) kommer fram till motsatsen av vad Fabozzi et al. (2008) gör och hittar ingen specifik bransch som genererar en signifikant överavkastning.

3.1.1 Modeller i utförda studier

De tidigare studier som vi har tittat på har alla utom Kim & Venkatachalam (2011) använt CAPM och Fama French three factor model (Hong & Kacperczyk, 2009; Fabozzi et al., 2008; Liston & Soydemir, 2010; Lobe & Walkshäusl 2016). Detta kan bero på att Kim & Venkatachalams studie (2011, s. 415) dels granskar om det finns en högre informationsrisk ifall sin stocks har lägre kvalitet på de finansiella rapporterna, vilket i sin tur kan förklara högre förväntad avkastning hos sin stocks. Då Kim & Venkatachalam (2011) har en annan infallsvinkel för studien förklarar det varför modellerna skiljer sig från resten av studierna som är likartade med varandra. Lobe & Walkshäuls (2016, s. 316-
har använt sig av flera analysmetoder för att analysera data, de har använt Sharpe ratio, CAPM, Fama & French three asset pricing model, Chen´s three factor model samt Carhart modellen.

Tabell 2. Översikt av modeller i utförda studier.

Där CAPM = Marknadsmodellen, CNZ = Three factor model av Chen, FF = Fama French three factor model, FFC = Four factor model av Fama, French & Carhart, EQM = earnings quality measure av Ecker.

<table>
<thead>
<tr>
<th>Studie/modeller</th>
<th>CAPM</th>
<th>CNZ</th>
<th>FF</th>
<th>FFC</th>
<th>EQM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobe & Walkshäusl (2016)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hong & & Kacperczyk (2009)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabozzi et al. (2008)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim & & Venkatachalam (2011)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Liston & Soydemir (2010)</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Denna studie (2019)</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

I vår studie kommer vi att använda oss av CAPM samt Fama & french three factor model, dessa modeller är använda av tidigare studier som vi behandlar och vi kommer att beskriva dessa modeller i sektion 4.4 Analysmetod. CAPM är kritiserad modell då den endast tar marknadssrisk i beaktning (Fama & French 1997, s. 153), anledning till att vi använder denna modell är för att den är enkel applucerbar samt att vi anser att den ger åtminstone en fingervisning av hur verkligheten ser ut. Men på grund av att modellen endast har marknadssrisk i beaktning väljer vi att komplettera CAPM med Fama & French three factor model. Vi ser även att användningen av flera modeller styrker resultaten av studien vilket är en anledning till att inkludera båda dessa modeller.

3.2 Definition av sin

Sin stocks är börsnoterade bolag som ofta är involverade inom branscher såsom alkohol, betting & tobak (Hong & Kacperczyk, 2009, s. 16). Sin stocks ligger i konflikt med sociala normer, då investerare kan välja bort att investera i dessa aktiviteter beroende på vad investeraren tycker är oetiskt. Vad som är etiskt och vad som är oetiskt bestäms utifrån vems synvinkel man ser det ifrån. Fabozzi et al. (2008, s. 84) tar upp ett bra exempel på detta, han förklarar att olika kulturer har olika syn på skuldsättning, där västvärlden ser skuld som en nyttig företagsmässig handling medan vissa länder i mellanöstern ser skuld som något oetiskt som syftar till att man inte kan försörja sig själv.

Med det sagt menar vi att det finns en skillnad på vad som är etiskt och inte beroende på individ samt kulturella influenser. Med andra ord vill inte alla investerare att deras investerade kapital bidrar till alkoholberoende, vapen som hamnar i fel händer eller dylikt. Det finns en social norm mot att investera i verksamheter som orsakar mänskligt lidande, och som en konsekvens av detta tenderar investerare att undvika både för egen och andras räkning att investera i den typen av bolag (Hong & Kacperczyk, 2009, s. 16). Ett styrkande argument för detta kan finnas i Socially responsible investing (SRI) som främst används av fondförvaltare som ett ramverk för att pensionsfonder, aktiefonder och dylikt
 ska ha tydliga riktlinjer att inte investera i vad som definierats som oetiska bolag inom branscher såsom alkohol, tobak, hasardspel etc (Hong & Kacperczyk, 2009, s. 16).

Enligt en studie av Geczy et al. (2005) kunde man redan 2003 se att ungefär 2,14 biljoner americanska dollar, eller 11 % av totala tillgångar av granskade institutioner genomgick en socialt etisk granskning. En så pass stor del av tillgångar som aktivt inte investeras oetiskt bör således kunna ha en påverkan på prissättningen av sin stocks (Hong & Kacperczyk, 2009, s. 16). I denna studie kommer vi att titta på de branscher som är mest omskrivna i tidigare studier. Vi kommer nedan att redogöra för de vanligaste kategorierna inom sin stocks, vilka av dessa som kommer behandlas i studien samt vilka kategorier som kommer exkluderas och varför.

3.2.1 Alkohol

3.2.2 Bettingbolag

3.2.3 Tobak

3.2.4 Vapen

Vapen kan komma i många olika former och storlekar. Det finns allt från handhållna skjut vapen, personminor som grävs ned i omstridda territorium, stridsflygplan som kan skada både i luften och på land samt kärnvapen som kan orsaka massförstörelse (O’Connell 1989, s. 7). Vapen är främst för att upprätthålla världordningen, men kan i fel händer få förödande konsekvenser (O’Connell 1989, s. 7). Dessa konsekvenser kan speglas i vem eller vilka som de tillverkande företagen gör affärer med, och i förlängningen om slutkunden har för avsikt att behålla vapen eller sälja vidare till mer tvivelaktiga spekulanter. Urvalet för denna studie har valt att fokusera på de som uttryckligen tillverkar någon form av handhållna vapen, stridsflygplan eller dylikt. Dock kommer företag som utövar industri inom kärnvapen att undantas då det är svårt att särskilja företag som sysslar med kärnkraft och kärnvapen.

3.3 Exkluderingslistan hos svenska banker & fondbolag

AP7-fonden har således valt att svartlista börsnoterade företag som exempelvis deltar aktivt eller passivt i utvecklingen av kärnvapen. AP7 fonden utgår därigenom från beslutande underlag från staten, för sedan utforma normer för deras investeringsstrategi och väljer att svartlista de bolag som inte följer normen. Vidare har studien valt att inkludera svarta listor från bankerna Handelsbanken, Nordea, SEB och Swedbank. De fyra bankernas svarta listor kommer att sammanställas med AP7-fondens svarta lista så att vi får en gemensam svart lista att förhålla oss till och använda för studien.

3.4 Exkluderade branscher

Ovan har vi beskrivit de branscher som kommer att inkluderas i studien, men det finns otvivelaktigt fler branscher som sysslar med oetisk verksamhet. Många branscher kan
3.4.1 Vuxenunderhållning

Vuxenunderhållning är ett samlingsbegrepp vi väljer att använda för en bransch som dels tillhandahåller pornografiskt material men även sexuella tjänster i utbyte mot pengar. Denna sistnämnda verksamhet är olaglig i stora delar av världen, och där den är laglig är den även svår att identifiera som en enskild verksamhet och inte del av exempelvis en restaurangkoncern eller dylikt. Dessutom har författarna av denna studie inte lyckats identifiera någon aktiv börsnoterad aktör, förutom Playboy som har avnoterats sedan 2004 (Nasdaq, u.å.). Då informationen om denna bransch där både laglig och olaglig verksamhet förekommer är dess omsättning svår att beräkna, men enligt en studie av Gunter & Clissitt beräknas marknaden endast i Tyskland omsätta 15 miljarder Euro under 2013 (Gunter & Clissitt, 2013). Då ytterligare information om omsättning är svår att hitta, har branschen valts att exkludera från studien, dels för bristen på information men även svårigheten att som investerare faktiskt ha möjligheten att investera i branschen då det finns inga eller få börsnoterade och att transparensen är så låg.

3.4.2 Gas & olja

En stor del av världsekonomin är fortfarande beroende av den internationella olja- & gasindustrin, som tävlar om att utvinna begränsade resurser från jordens inre (Anifowose et al., 2016 s. 571). Vidare menar författarna att denna bransch är på väg från den okonventionella typen av energiutvinning till att försöka röra sig mot ett mer förnybart förhållningssätt till diverse drivmedel (Anifowose et al., 2016 s. 571). Gas & olja klassificeras som energibolag och det finns en bred variation av bolag och specialiseringar inom området. Det finns allt ifrån de som borrar efter olja i djupaste havsbotten, till de som raffinerar råolja, utvinner naturgas och även säljer bensin och diesel till vanliga konsumenter (Anifowose et al., 2016 s. 571). Då detta är en så pass bred bransch, och att denna kategori främst faller in under negativ miljöpåverkan har denna valt att exkluderas från studien.

3.4.3 Övriga oetiska bolag

Det kan finnas fler branscher eller företag som sysslar med verksamhet som kan anses som oetisk. Dessa bolag kan använda sig av barnarbete, inte respektera mänskliga rättigheter eller dylikt. Vi har valt att exkludera dessa typer av "mjuka värden" då det är svårt att veta vilka bolag som använder sig av barnarbete eller kränkande av mänskliga rättigheter, detta då ingen skyttar öppet med det. Ytterligare exempel på exkludered oetisk verksamhet kan vara bolag som använder sig av grova djurförsök eller grymma djurförhållanden överlag för päls eller matproduktion. Om vi hade tagit med dessa i beaktning hade urvalet försvårats och resultaten blivit svårare att tyda, därför väljer vi att endast fokusera på de bolag vars bransch som helhet kan anses som oetisk och inte fokusera på hur de bedriver sin verksamhet. Det finns givetvis fler bolag inom branscher som inte har nämnt här men ändå driver en oetisk verksamhet. Dessa är svåra att definiera, men studien hoppas kunna få in en del av dessa genom “svarta listan” som publicerats av exempelvis AP7-fonden, som visar bolag de aktivt valt att undvika och med en...
kommentar om varför så är fallet. Endast de bolag som är med på de svarta listorna kommer att vara med i studien och testas separat från de bolag som definierats som sin stocks och handplockats in i vår sin-portfölj för jämförelse mot världsindex.

3.5 Hypoteser
I detta stycke kommer vi utifrån teorierna och förklaringarna kring vad som definieras som sin stocks att utforma hypoteser för empirisk prövning. Hypoteserna kommer sedan att testas mot empirin för att antingen förkastas eller accepteras.

Lobe & Walkshäuls (2016) kommer fram till att sin stocks inte genererar en överavkastning, detta är motsägande mot de tidigare studier vi har tittat på. Vi ser detta som intressant och ställer oss frågan om Lobe & Walkshäuls resultat är motsägande på grund utav att de har använt så många länder i deras urval. Vi kommer använda liknande angreppssätt som Lobe & Walkshäuls, men med andra branscher och årtal, för att se om denna studie får ett annat resultat. För att testa detta kommer regressioner genomföras för att se om Jensens Alpha är skilt från noll. Jensens Alpha är ett prestationssätt som förklaras mer ingående under kapitel 4.4.1 CAPM. För att kunna förkasta hypotesen utgår studien från en signifikansnivå på fem % dvs. ett p-tal på 0,05. Utifrån detta har vi kommit fram till följande hypotes:

Hypotes 1: Uppvisar sin stocks överavkastning eller underavkastning i förhållande till index över tid?
H0 : Jensens Alpha = 0
H1 : Jensens Alpha ≠ 0

De tidigare studier som vi har tittat på har alla konstruerat portföljer med sin stocks. Dessa sin stocks har blivit definierade utefter branscher som anses som oetiska. Vi har valt att dels testa om sin stocks uppdelade utefter bransch kan generera en överavkastning men vi har även valt att testa om aktier som aktivt blir bortvalda av institutioner kan generera en överavkastning. Detta leder oss till studiens andra hypotes:

Hypotes 2: Uppvisar svarta listans innehav överavkastning eller underavkastning i förhållande till index?
H0 : Svarta listan = 0
H1 : Svarta listan ≠ 0

3.6 Sammanfattning
Definitionen av sin stocks är oetiska företag, men vad som är oetiskt varierar beroende på vems ögon man ser perspektivet genom. Tidigare studier har påvisat lite olika resultat, majoriteten har sett en överavkastning i sin stocks medan en studie vi har studerat hittade motsatsen. Vi ämnar till att undersöka detta fenomen och se hur ny data påverkar resultaten.

Med detta sagt har vi i detta avsnitt definierat en variation av branscher som vi, i enlighet med tidigare författare av andra studier, anser som oetiska. Vi har specificerat vilka branscher som kommer att ingå i denna studie och varför. Vi har även redogjort för de branscher som kommer att exkluderas, och varför dessa har valts att exkluderas. Sammanfattningvis kommer branscherna alkohol, betting, tobak & vapen att inkluderas, dessutom kommer vi granska exkluderingslistor. Största anledningen till att vi väljer att
exkludera vissa branscher som tidigare studier har inkluderat är brist på transparens, varierad syn på dess nivå av etik och att studien måste ha avgränsningar för att inte bli för omfattande.
4. Metod

4.1 Forskningsdesign - observation eller experiment

En studie kan antingen genomföras genom att observera dåtida händelser och försöka förklara fenomenet, eller att genomföra experiment för att försöka förutsäga utkomsten (Lantz, 2014, s. 25). Dessa kallas för antingen en observationsstudie eller en experimentstudie. Vidare menas att en observationsstudie kännetecknas av att omgivningen observeras som den är, man samlar in data från observationerna som ingår i det tänkta urvalet. Om syftet med studien är att beskriva ett fenomen, är en observationsstudie den som används främst (Lantz, 2014, s. 25). En experimentell studie kan anses som motsatsen till en observationsstudie då en experimentell studie genom att placera ut individer från urvalet i en begränsad kontext, en testmiljö, för att undersöka studiens syfte (Lantz, 2014, s. 25). Ett exempel kan vara att be en person genomföra en viss typ av handling för att se andra individers reaktioner, medan en observationsstudie innebär att studien bara granskar individer utan att ge de instruktioner om dess beteende inför de andra i gruppen.

Denna studie är en observationsstudie, då den ämnar att undersöka historisk data från aktier som ingår i urvalet. Denna data bearbetades för att jämföra den mot en form av kontrollvärde, ett index, för att undersöka om det finns någon observerad och mätbar skillnad. Då denna studie inte genomfört någon typ av experiment, dvs. att studien aktivt försökt att påverka något av företagen i viss utsträckning, så var en experimentell studie att utesluta.

4.2 Urval & data

För att filtrera fram sin stocks har vi valt använt programmet Eikon. I Eikon har vi använt oss av filtrering med hjälp av TRBC (Thomson Reuters Business Classification). TRBC är ett globalt klassificeringsystem som används till att kategorisera aktier utifrån vilken industri företaget verkar inom. TRBC inkluderar ett flertal industrier samt underkategorier inom varje industri där varje kategori indexeras av ett nummer. Med hjälp av TRBC kan vi markera de kategorier som överensstämmer med de branscher som vi definierat och valt att använda i studien som återfinns under kapitel 3. De kategorier som kommer att användas är:
Tabell 3. Företagskategorier för insamling av data

<table>
<thead>
<tr>
<th>Namn på företagsklassifikation</th>
<th>Kod för företagsklassifikation</th>
<th>Inkluderas i Sindex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace & Defence</td>
<td>52101010</td>
<td>Vapen</td>
</tr>
<tr>
<td>Brewers</td>
<td>54101010</td>
<td>Alkohol</td>
</tr>
<tr>
<td>Casino & gambling</td>
<td>53301030</td>
<td>Betting</td>
</tr>
<tr>
<td>Destillers & Wineries</td>
<td>54101020</td>
<td>Alkohol</td>
</tr>
<tr>
<td>Tobacco</td>
<td>54102030</td>
<td>Tobak</td>
</tr>
</tbody>
</table>

Utifrån de kategorierna fick vi fram 744 aktiva bolag. När vi valde att inkludera inaktiva bolag så tillkom ytterligare 8 bolag, till en total av 752 bolag som klassas som sin stocks. När dessa bolag identifierats och blivit sammansatta i en gemensam lista med var det så kallad rådata. Vi valde att inkludera de inaktiva bolagen i vårt urval då vi ansåg att bolag som t.ex. blivit uppköpta eller gått i konkurs avger en viktig del av historien och vi såg ingen anledning till att exkludera dessa.

Dessa 752 bolag utgjorde vår rådata. Denna rådata bestod av namn på de 752 bolag, dessa bolag identifierades med en kod som kallas för “RIC” vilket står för står för “Reuters Instrument Codes”. RICs är en sorts identifieringskod som är unik för varje enskilt bolag och det används för att söka efter bolag i databasen datastream. När vi sorterat datan utifrån RICs visade det sig att 42 bolag saknade RICs och kunde därför inte längre vara med i datainsamlingen vilket resulterade till ett bortfall. Efter det behövde RICs-koderna för varje bolag konverteras till “Mnemonics” detta för att senare kunna omvandla individuell utveckling till en gemensam avkastning, ett gemensamt sindex. Mnemonics är en annan typ av individuell identifieringskod för varje enskilt bolag och kan enkelt förklarats ses som ett annat kodspråk för identifikation. När konverteringen från RICs till mnemonics skedde visade det sig att ytterligare 6 bolag blev ett bortfall, då dessa saknade godkända mnemonics och kan således inte inkluderas i beräkningen av ett gemensamt sindex. Slutligen hade studien 704 bolag kvar som hade både RICs och mnemonics, som var kompatibla för att kunna ladda ned datan och sammanställa de i olika sindexportföljer. Nedan finns en illustration av hur processen har gått tillväga i kronologisk ordning.
Figur 2. Grafisk bild över hur datinsamlingen och sorteringsprocessen gått till.

Det urval som utgör sindexen med svartlistade bolag innefattade 65 bolag. Vi har kommit fram till dessa 65 bolag genom de olika institutionernas (AP7-fonden, Handelsbanken, Nordea, SEB och Swedbank) exkluderingslistor. Vi valde att inkludera de bolag som fanns med på tre eller fler av någon av institutionernas exkluderingslistor. Vi valde detta tillvägagångssätt då vi endast ville undersöka bolag som nämns på majoriteten av institutionernas listor. Detta dels på grund utav tidsbrist men även då vi ville undersöka de bolag som ansågs som mest oetiska. Studien är medveten om att en investeringsstrategi som baseras på svarta listan är orealistisk, då investerare inte kan veta vad som kommer vara svartlistat 20 år framåt. Detta blir en teoretisk portfölj då studien tar svartlistade bolag i nutid och anser att de varit svartlistade 20 år bakåt i tiden, trots att de inte nödvändigtvis har varit svartlistade, då de svarta listorna kan förändras år till år.

Urvarta av länder har vi grundat på studien som Lobe & Walkshäusl (2016) har genomfört. Lobe & Walkshäusl (2016) omfattar 51 nationer i sin studie och vi ämnar att
använda samma 51 länder. Nedan finns en tabell över de länder vars sin stocks kommer att inkluderas i studien:

Tabell 4. Länder uppdelat efter region

<table>
<thead>
<tr>
<th>Afrika</th>
<th>Amerika</th>
<th>Asien</th>
<th>Europa</th>
<th>Oceanien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egypten</td>
<td>Argentina</td>
<td>Kina</td>
<td>Österrike</td>
<td>Australien</td>
</tr>
<tr>
<td>Marocko</td>
<td>Brasilien</td>
<td>Hong Kong</td>
<td>Belgien</td>
<td>Nya Zeeland</td>
</tr>
<tr>
<td>Sydafrika</td>
<td>Kanada</td>
<td>Indien</td>
<td>Tjeckien</td>
<td></td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>Chile</td>
<td>Indonesien</td>
<td>Danmark</td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td>Israel</td>
<td>Finland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexiko</td>
<td>Japan</td>
<td>Frankrike</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru</td>
<td>Malaysia</td>
<td>Tyskland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>Pakistan</td>
<td>Grekland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venezuela</td>
<td>Filippinerna</td>
<td>Ungern</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Singapore	Irland
Sydkorea	Italien
Srilanka	Luxemburg
Taiwan	Nederländerna
Turkiet	Norge
Polen	
Portugal	
Ryssland	
Slovakien	
Spanien	
Sverige	
Schweiz	
Storbritannien	

<table>
<thead>
<tr>
<th>4</th>
<th>9</th>
<th>14</th>
<th>22</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalt</td>
<td>51 länder</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Största delen av vårt urval är aktier noterade i USA vilket motsvarar 27,27 % av det totala urvalet, den näst största delen av urvalet är noterade i Kina som motsvarar 8,81 % utav det totala urvalet (övrig fördelning illustreras i tabell 6). Detta tyder på att en stor del utav vårt urval är lokalisert i ett fåtal länder. Detta kan göra att våra resultat blir mer applicerbara mot just dessa länder. I vår studie vill vi spega verkligheten och då verkligheten ser ut på detta vis väljer vi att inte göra några förändringar i vårt urval. De regioner som innefattar störst delen av vårt urval är Amerika (33,66%), Asien (34,52 %) och Europa (25,85%), resterande fördelning kan ses i tabell 5. Vi kommer att testa om fördelningen har en inverkan på resultatet genom våra robustness test. Vad gäller fördelningen av industrier är vapenindustrin den som motsvarar största delen av urvalet med 38,49% och tobaksindustrin är den som motsvarar minsta delen med 6,25 %. Resterande fördelning kan ses nedan i tabell 5.

Tabell 5. Summering av urval uppdelat efter industri och region

<table>
<thead>
<tr>
<th>Region/bransch</th>
<th>Aerospace & Defense</th>
<th>Brewers & Gaming</th>
<th>Casinos & Gaming</th>
<th>Distillers & Wineries</th>
<th>Tobacco</th>
<th>Totalsumma</th>
<th>% av total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afrika</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>1,56%</td>
</tr>
<tr>
<td>Amerika</td>
<td>117</td>
<td>15</td>
<td>55</td>
<td>33</td>
<td>17</td>
<td>237</td>
<td>33,66%</td>
</tr>
<tr>
<td>Asien</td>
<td>72</td>
<td>29</td>
<td>56</td>
<td>67</td>
<td>19</td>
<td>243</td>
<td>34,52%</td>
</tr>
<tr>
<td>Europa</td>
<td>73</td>
<td>24</td>
<td>37</td>
<td>42</td>
<td>6</td>
<td>182</td>
<td>25,85%</td>
</tr>
<tr>
<td>Oceanien</td>
<td>7</td>
<td>5</td>
<td>13</td>
<td>6</td>
<td></td>
<td>31</td>
<td>4,40%</td>
</tr>
<tr>
<td>Totalsumma</td>
<td>271</td>
<td>76</td>
<td>164</td>
<td>149</td>
<td>44</td>
<td>704</td>
<td>100,00%</td>
</tr>
<tr>
<td>% av total</td>
<td>38,49%</td>
<td>10,80%</td>
<td>23,30%</td>
<td>21,16%</td>
<td>6,25%</td>
<td>100,00%</td>
<td></td>
</tr>
</tbody>
</table>

I följande tabell 6 nedan har fördelningen av bolag placerats ut för respektive land. Här får man en enkel överblick i vilka länder som har flest bolag inom en viss industri eller vilken nation som har många respektive få sin stocks noterade på dess handelsplatser. Den absolut största nationen sett till antal sin stocks räknat var USA med 192 bolag medan sista platsen delas mellan Argentina, Colombia, Tjeckien, Egypten, Ungern, Irland, Luxemburg, Marocco, Portugal, Schweiz & Venezuela med endast 1 bolag inom varierande branscher mellan länderna.
Tabell 6. Summering av urval uppdelat utefter industri och land

<table>
<thead>
<tr>
<th>Land</th>
<th>Aerospace & Defense</th>
<th>Brewers</th>
<th>Casinos & Gaming</th>
<th>Distillers & Wineries</th>
<th>Tobacco</th>
<th>Totalsumma</th>
<th>% av total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>1</td>
<td>4</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0,14%</td>
</tr>
<tr>
<td>Australien</td>
<td>7</td>
<td>4</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td>26</td>
<td>3,69%</td>
</tr>
<tr>
<td>Österrike</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0,57%</td>
<td></td>
</tr>
<tr>
<td>Belgien</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0,43%</td>
<td></td>
</tr>
<tr>
<td>Brasilién</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0,57%</td>
<td></td>
</tr>
<tr>
<td>Kanada</td>
<td>12</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>3,55%</td>
</tr>
<tr>
<td>Chile</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>1,28%</td>
<td></td>
</tr>
<tr>
<td>Kina</td>
<td>27</td>
<td>7</td>
<td>27</td>
<td>1</td>
<td>62</td>
<td>8,81%</td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,14%</td>
<td></td>
</tr>
<tr>
<td>Tjeckien</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0,28%</td>
<td></td>
</tr>
<tr>
<td>Danmark</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0,57%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egypten</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0,28%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankrike</td>
<td>15</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>32</td>
<td>4,55%</td>
<td></td>
</tr>
<tr>
<td>Tyskland</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>19</td>
<td>2,70%</td>
<td></td>
</tr>
<tr>
<td>Grekland</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>0,57%</td>
<td></td>
</tr>
<tr>
<td>Hong Kong</td>
<td>3</td>
<td>1</td>
<td>23</td>
<td>6</td>
<td>33</td>
<td>4,69%</td>
<td></td>
</tr>
<tr>
<td>Ungern</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,14%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indien</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>15</td>
<td>6</td>
<td>5,68%</td>
<td></td>
</tr>
<tr>
<td>Irland</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,14%</td>
<td></td>
</tr>
<tr>
<td>Indonesien</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>0,85%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>0,85%</td>
<td></td>
</tr>
<tr>
<td>Italien</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>0,85%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>22</td>
<td>3,13%</td>
</tr>
<tr>
<td>Sydkorea</td>
<td>10</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>25</td>
<td>3,55%</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0,14%</td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>1,28%</td>
<td></td>
</tr>
<tr>
<td>Mexiko</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0,28%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marokko</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,14%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nederländerna</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>0,43%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nya Zeeland</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>0,71%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norge</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>0,57%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pakistan</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>0,57%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0,28%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filippinerna</td>
<td>8</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>1,42%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>0,85%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,14%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ryssland</td>
<td>31</td>
<td>2</td>
<td>2</td>
<td>33</td>
<td>4,69%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>0,85%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sydafrika</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>0,85%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spanien</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>0,57%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>0,71%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sverige</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>18</td>
<td>2,56%</td>
<td></td>
</tr>
<tr>
<td>Schweiz</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,14%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>0,71%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkiet</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0,43%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storbritannien</td>
<td>11</td>
<td>2</td>
<td>13</td>
<td>6</td>
<td>2</td>
<td>34</td>
<td>4,83%</td>
</tr>
<tr>
<td>USA</td>
<td>103</td>
<td>7</td>
<td>46</td>
<td>21</td>
<td>13</td>
<td>192</td>
<td>27,27%</td>
</tr>
<tr>
<td>Venezuela</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0,43%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0,43%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalsumma</td>
<td>271</td>
<td>76</td>
<td>164</td>
<td>149</td>
<td>44</td>
<td>704</td>
<td>100,00%</td>
</tr>
</tbody>
</table>
Utifrån urvalet har 13 portföljer bildats. Denna indelning förtydligas under kapitel 4.4.3 Uppdelning av insamlad data. Samtliga portföljer jämförs med en relevant index, dessa index är hämtade från MSCI för respektive region. I tabell 7 nedan kan det utläsas vilken index som används för respektive region.

Tabell 7. Val av index för region.

<table>
<thead>
<tr>
<th>Region</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Världen</td>
<td>MSCI World</td>
</tr>
<tr>
<td>Afrika</td>
<td>MSCI EM (Emerging Markets)</td>
</tr>
<tr>
<td>Amerika</td>
<td>MSCI AC AMERICAS</td>
</tr>
<tr>
<td>Asien</td>
<td>MSCI AC ASEAN</td>
</tr>
<tr>
<td>Europa</td>
<td>MSCI EUROPE</td>
</tr>
<tr>
<td>Oceanien</td>
<td>MSCI AUSTRALIA</td>
</tr>
<tr>
<td>USA</td>
<td>MSCI USA</td>
</tr>
<tr>
<td>Sverige</td>
<td>MSCI SWEDEN</td>
</tr>
</tbody>
</table>

4.3 Datainsamlingsmetod
All data innefattar historiska totalavkastningen för de olika sindexarna. Denna data har inhämtats från Datastream (Thomson Reuters). Totalavkastningen har även inhämtats på samma vis för samtliga jämförande index, dessa är index för Världen, Afrika, Asien Amerika, Europa, Oceanien, Sverige och USA. Denna datainsamlingsmetod var även densamma som tidigare forskning har använt. I beräkningen av riskjusterad avkastning med hjälp Fama & French three factor model är olika riskfaktorer nödvändiga. Dessa riskfaktorer har vi inhämtat från Kenneth French datasamling, vi förklarar detta mer ingående under rubriken 4.4.2 Fama & French three factor model.

4.4 Analysmetod
I denna del utreds och förtydligas koncept, teorier och modeller som knyts till vår studie och möjliggör en analys av resultatet. Studien har använt linjär regression för att skatta alpha, dvs. riskjusterad avkastning. Detta har gjorts med CAPM och Fama French three factor model.

4.4.1 CAPM
För att beräkna huruvida våra portföljer genererar en överavkastning behövde vi beräkna avkastningen som våra valda sin stocks har genererat och sedan jämföra dem med resterande marknaden. För att beräkna riskjusterad avkastning har ett flertal tidigare studier använt CAPM som en av modellerna. CAPM även kallad marknadsmodellen är en modell gjord av Sharpe (1964) samt Lintner (1965) som beräknar förväntad avkastning utifrån en tillgångs marknadsrisk. Exempel på studier som har använt CAPM i sin beräkning av överavkastning för sin stocks är Hong & Kacperczyk (2009, s. 28); Fabozzi
et al. (2008, s. 90); Lobe & Walkshäusl (2016, s. 317) samt Liston (2016, s. 65). Jensen (1968 s. 393) har tagit fram en utveckling av CAPM där riskfria räntan (R_f) subtraherats på båda sidor av ekvationen. Ekvationen ser ut på följande sätt:

$$R_i - R_f = \alpha_i + \beta_i(R_m - R_f) + \epsilon_i$$ \hspace{1cm} (1)

Där:
- R_i = tillgångens avkastning
- R_f = riskfria räntan
- α_i = tillgångens överavkastning (Jensen's alpha)
- β_i = tillgångens beta
- R_m = marknadsindex avkastning
- ϵ_i = statistisk felterm

Denna utveckling av CAPM kan användas för att beräkna överavkastning där interceptet eller även kallat Jensen's alpha som indikerar om tillgången genererar en överavkastning eller underavkastning givet tillgångens betavärde, dvs. marknadsrisken. Om man bortser från Jensen's alpha säger formeln att en tillgångs riskpremie (formelns vänsterled) kommer vara lika med exponeringen till den systematiska risken plus feltermen ($\beta_i(R_m - R_f)+ \epsilon_i$). Men med Jensen's alpha kan man se eventuell avkastning utöver riskpremie.

CAPM är en kritiserad modell vilket vi tar upp mer under kapitel 4.4.2 Fama & French three factor model. CAPM kommer framför allt att användas under kartläggningen av olika regioners överavkastning. Där det är möjligt kommer dock en mer rättvisande modell att användas.

4.4.2 Fama & French three factor model

$$R_i - R_f = \alpha_i + \beta_i(R_m - R_f) + siSMB + hiHML + \epsilon_i$$ \hspace{1cm} (2)

Där:
- R_i = tillgångens avkastning
- R_f = riskfria räntan
- α_i = tillgångens överavkastning (Jensen's alpha)
- β_i = tillgångens beta
- R_m = marknadsindex avkastning
- ϵ_i = statistisk felterm
- si = koeficient som bestäms av linjär regression
- hi = koeficient som bestäms av linjär regression
- SMB = Riskfaktor
- HML = Riskfaktor
Även i denna modell kan vi mäta över- samt underavkastning med hjälp av alpha, givet portföljens skattade exponering mot marknads-, SMB- och HML-faktorerna. Denna modell syftar till att vara mer rättvisande än CAPM då den tar in flera faktorer. Vi har använt Fama och Frenchs modell i våra regressioner för att få en bild utav urvalets riskjusterade avkastning.

Vi har inhämtat SMB- och HML-faktorerna från AQR (2019) data library, ett globalt investment management företag som tillhandahåller statistiska underlag för finansiella beräkningar. Dessa faktorer används för samtliga Fama French three factor regressioner. Faktorerna fanns tillgängliga till viss del regionalt, bland annat fanns dessa faktorer för hela världen, Europa, Nordamerika samt ett flertal utvecklade länder. Alla de länder som inkluderas i vårt urval fanns inte med i det urvalet som faktorerna är beräknade utefter. Exempelvis fanns inte Kina eller de Afrikanska länderna med, dock fanns det inte några mer utförliga faktorer tillgängliga och vi anser att dessa faktorer speglar vårt urval tillräckligt bra för att vi ska kunna använda dem. Dessa faktorer var alla beräknade i USD. Då vi genomfört denna studie utifrån en svensk investerares perspektiv och då alla andra faktorer i våra modeller är beräknade i SEK har även dessa räknas om till SEK. Detta har vi gjort genom att använda följande modell:

\[Y = (1 + X) * (1 + V) - 1 \]

(3)

Där

- \(Y \) = SML- eller HML-faktor i SEK
- \(X \) = SML- eller HML-faktor i USD
- \(V \) = Förändringen i växelkursen USD/SEK

4.4.3 Uppdelning av insamlad data

4.4.4 Tillvägagångssätt för analys

Samtliga test har genomförts med statistikprogrammet “STATA”. Vi har samlat all vår data i stata för att sedan genomföra beskrivande statistik, regressionsdiagnostik samt regressor. Vi har valt att använda stata då det är enkelt att använda samt innefattar funktioner som kompenserar för problem med bl.a. heteroskedasticitet och seriekorrelation (även kallad autokorrelation) vilket gjort resultaten mer pålitliga.

4.5 Robusthetstest

För att testa om regionen som de olika sin stocks verkar i har en inverkan på resultatet har vi genomfört robusthetstest för detta. Det gjorde vi genom att genomföra regressioner, med Fama French three factor model, där en region eller världsdel togs bort ur urvalet. Exempelvis genomförs en regression på hela urvalet exklusive Asien, annars allting lika. Det genomfördes totalt fem tester av denna typ dvs. ett test för varje region som excluderas.
Ett liknande tillvägagångssätt genomfördes även för att testa om olika avkastning i de olika syndfulla branscherna hade en inverkan på resultatet. Dessa test genomfördes i samma anda som robusthetstesterna för regionerna men för dessa test kommer branscher att exkluderas. Exempelvis genomförs tester på hela urvalet exklusive alkoholbranschen för att se skillnader i avkastning innebar en förändring i resultat.

4.6 Riskfria räntan

4.7 Klassiska antaganden för regressionsmodeller

För att genomföra en korrekt regressionsanalys av insamlad data måste en del antaganden vara uppfyllda för att svaren som modellen ska ge kan anses som tillförlitliga. De antaganden studien beaktar för sina regressioner är listade nedan och är inhämtade i enlighet med ämnets omfattning och användandet av regressionsanalys enligt Studenmund (2014. s. 98). Hur följande antaganden uppfylls av studien återfinns under kapitel 5.5 Regressionsdiagnostik.

1. Regressionsmodellen är linjär, är korrekt specificerad och har en additiv felterm
2. Feltermen har villkorat medelvärdet lika med noll
3. Alla förklarande variabler är okorrelaterade med feltermen
4. Observationer av feltermen är inte korrelerade med varandra (ingen serierelation)
5. Feltermens varians är konstant
6. Ingen förklarande variabel är en perfekt linjär funktion av någon annan förklarande variabel (ingen perfekt multikollinearitet)
7. Feltermen är normalfördelad.

4.7.1 Förtydliganden av de klassiska antagandena enligt Studenmund (2014)

1. Antagandet att regressionsmodellen är linjär behöver inte betyda att den underliggande teorin är linjär. Två ytterligare egenskaper måste vara uppfyllda för att det första antagandet ska hålla. För det första får vi anta att ekvationen är korrekt uppställd. Om en ekvation har en variabel som lämnats utanför modellen eller inkluderas men fungerar inkorrekt så kommer ekvationen som helhet att visa felaktiga svar. För det andra får vi
anta att en stokastisk (slumpmässig) felterm har lagts till till ekvationen. Detta då feltermen måste vara additiv och får därför inte multipliceras eller dividerad med någon annan variabel i ekvationen.

3. Med antagande 3 menas att man kan anta att de observerade värdena av den förklarande variabeln är oberoende av värden som agerar felterm. Om en förklarande variabel och feltermen istället var korrelerade med varandra skulle Ordinary Least squares (OLS), som är en typ av linjära minsta kvadreringsmetod för att beräkna de okända parametrarna i en linjär regressionsmodell, mest troligen bidra till att X-variablen får en del av variationen från Y-variablen, trots att det egentliga feltermen som genererar denna korrelation. Exempelvis om X-variablen och feltermen är positivt korrelerade hade den estimerade koefficienten (coef) blivit högre än vad den annars hade blivit, vilket skulle ge ett felvisande resultat.

4. Att observationer av feltermen inte är korrelerade med varandra (ingen seriekorrelation) betyder att observationer av feltermen är tagna oberoende av varandra. Om en systematisk korrelation finns mellan en observation av en felterm och en annan felterm, kan det vara svårt att med OLS få ett pricksäkert estimat av standardfel (Std. err.) av koefficienten (coef). Ett exempel på detta kan vara att om en observation av feltermen är positiv så ökar det chansen att nästkommande observation också är positiv. Om detta var fallet skulle dessa observationer vara positivt korrelerade och bryta mot denna regel.

betyder det att avvikelser i en plot chart ska vara ungefär lika långt ifrån regressionslinjen. Om avvikelserna ökar kan det finnas heteroskedasticitet i datan. Vid problem med heteroskedasticitet finns en funktion i stata som heter robusta standardfel, denna funktion kompenserar för eventuell heteroskedasticitet och gör att man trots detta kan dra slutsatser från resultaten. I de regressioner som visar tecken på seriekorrelation kommer Newey-West standardfel att användas. Dessa standardfel kompenserar även för heteroskedasticitet vilket innebär att för dessa kommer vi inte att använda funktionen Robusts standardfel utan endast Newey-West standardfel.

6. Att med “ingen förklarande variabel är en perfekt linjär funktion av någon annan förklarande variabel (ingen perfekt multikollinearitet)” menas perfekt kollinearitet mellan två oberoende variabler betyder att de egentligen kan anses som en och samma variabel, att en av dem är en multipel av den andra eller att en konstant har blivit tillagd som en variabel. I regressioner vill man undvika variabler med perfekt multikollinearitet då dessa variabler inte tillför något, det är bättre att ha individuella och unika variabler som tillsammans kan ge en bättre förklaring på vad regressionen ska beräkna.

För att undvika multikollinearitet har vi valt att testa våra regressioner mot multikollinearitet. Enligt IDRE (u.å. A) finns en tumregel för att se om multikollinearitet förekommer i en modell, i denna tumregel används ett VIF-värde. VIF står för “variance inflation factor” och om detta värde är större än 5 bör ytterligare undersökning av multikollinearitet genomföras (Studenmund, s. 274). Studien har testat regressionerna och om VIF-värdena varit lika med eller större än 5 har vidare tester genomföras. Detta VIF-värde är medelvärdet av VIF-värdena för faktorerna SMB, HML och Market Return för varje enskild region. När regressionerna för enskilda branscher gjorts har de ha samma VIF-värde som världen, då det är världens faktorer som de ställs emot i regressionen.

7. “Feltermen är normalfördelad” betyder att även fast vi redan har antagit att observationer av feltermerna är individuella (enligt regel 4) från en distribution som har noll som medelvärde (enligt regel 2) samt att de har en konstant varians (enligt regel 5), har inte fördelningsens fysiska form förklarats. Observationer av feltermen är tagna från en normalfördelning som är klockformad och följer generellt ett symmetriskt mönster. Denna regel är normalt inte ett krav för test som inkluderar OLS, men används huvudsakligen för genomförandet av hypotesprövningar vilket denna studie ämnar att göra.

4.8 Förklaring av regressionens beståndsdelar
Nedan syns en regression som ett exempel, detta exempel inkluderas för att presentera de beståndsdelar som kommer att finnas med i de regressioner som kommer att presenteras i kapitel 5.2. Detta görs för att förtydliga och för läsaren som inte är fullt bevandrad med regressioner sedan tidigare. Tabell 8 nedan har ditsatta bokstäver som sedan under tabellen förklaras var för sig vad de betyder. Vi har utgått ifrån Idre’s (u.å. B) definitioner. Viktigt att notera här är att regressionen nedan inte i detta skede analyseras, utan endast förklaras hur den ska läsas. Samtliga regressioner kommer att presenteras och analyseras i sin helhet senare under kapitel 5.2.

Tabell 8. Världen Fama French SMB HML
A. Source - visar fördelningen av variansen i resultatvariabeln, det här är de kategorier som ska undersökas: Model, Residual och Total. Totalvariationen är uppdelad i variansen som kan förklaras av de oberoende variablerna (Model) och variansen som inte förklaras av de oberoende variablerna (residual eller error).

B. SS - SS står för sum of square och är ett mått på urvalets spridning.

C. df - df står för degrees of freedom, vilket innebär hur många värden som kan variera. Residualen för degrees of freedom (df) beräknas genom att ta totala df (250) minus df för modellen (3), dvs. 247 residual df.

D. MS - MS står för mean square och är lika med SS dividerat på df

E. Number of obs - Antalet observationer som används i regressionsanalysen. I vårt fall är observationerna månadsvis, dvs. 251 månader.

F. F (3, 247) - Detta är F-statistiken för mean square model (0,079150428) dividerad med Mean square residual (0,000700456), vilket ger F = 113. Numren inom parentes är model och residual degrees of freedom som kommer från ANOVA-tabellen, som är den översta delen av tabellen i Tabell 8.

G. Prob > F - Sannolikheten i relation till F - värdet. Detta värde visar sannolikheten att alla koefficienter i modellen är lika med 0.

H. R-squared - Detta värde visar hur stor del av den beroende variabeln som förklaras av de oberoende variablerna.

I. Adjusted R-square - Detta är en justering av R-squared som inkluderar och justerar för tillägg av främmande prediktorer till modellen. Justerad R-square beräknas med formeln 1 - ((1 - Rsq) ((N - 1) / (N - k - 1))) där k är antalet prediktorer.

J. Root MSE - Root MSE är standardavvikelsen för feltermen och är kvadratroten av Mean square residual (se ovan D. MS Mean square).

K. VärldenER - Är namnet på den beroende variabeln, i detta fall är det Excess return för vår sindex.

<table>
<thead>
<tr>
<th>(A) Source</th>
<th>(B) SS</th>
<th>(C) df</th>
<th>(D) MS</th>
<th>(E) Number of obs</th>
<th>= 251</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>.237451283</td>
<td>3</td>
<td>.079150428 (G)</td>
<td>Prob > F</td>
<td>= 0.0000</td>
</tr>
<tr>
<td>Residual</td>
<td>.173012669</td>
<td>247</td>
<td>.000700456 (H)</td>
<td>R-squared</td>
<td>= 0.5734</td>
</tr>
<tr>
<td>Total</td>
<td>.410463952</td>
<td>250</td>
<td>.001641856 (I)</td>
<td>Adj R-squared</td>
<td>= 0.02647</td>
</tr>
</tbody>
</table>

K) VärldenER	(L) Coef. (M) Std. Err. (N) t (O) P>	t	(P) [95% Conf. Interval]			
VärldenMR	.7545339	.0432262	17.46	0.000	.6693949	.8396729
lobalmmbi-k	.0001054	.0001093	0.96	0.336	-.0001099	.0003207
lobalhmli-k	.0002155	.0000845	2.55	0.011	.0000491	.0003819
Q_cons	.0035063	.0016922	2.07	0.039	.0001723	.0068382
L. Coef - Dessa är värdena från regressionsekvationen för att förutsäga den beroende variabeln från den oberoende variablerna.

M. Std. err. - Std. err. står för Standard error och innebär standardfelen för regressionens koefficenter.

N. t - T-värdet används för att testa om en koefficient skiljer sig signifikant från noll.

O. P>| t | - Denna kolumn visar p-värdet för en koefficient som används för att testa nollhypotesen att koefficienten är lika med noll.

P. [95% Conf. Interval] - Dessa är 95 % konfidensintervall för koefficierterna. Konfidensintervallet är relaterat till p-värdena så att koefficienten inte är statistiskt signifikant vid P-tal högre än = 0,05. Dock kommer studien även att kommentera de resultat som överstiger kravet på 0,05 i P-tal men som kommer nära, detta då dessa inte helt kan ignoreras enbart på grund av dess P-tal. Även om dessa kan vara intressanta att belysa står studien fast vid att dessa inte är statistiskt signifikanta enligt det uppsatta kravet på max 0,05 i P-tal.

Q. _cons – Denna rad visar regressionens intercept vilket för vår modell är Jensens alpha. Detta visar tillgångens riskjusterade avkastning givet de variabler som modellen innefattar.
5. Resultat

I det här avsnittet går vi igenom vad datainsamlingen visat när datan har beräknats från modellerna i metodavsnittet. Vi kommer att genomföra en serie med regressioner, dels för världen som helhet, sen kommer vi även bryta ned datan i olika världsdelar och olika branscher för att se om det finns signifikanta resultat. Vi kommer även redogöra för om regressionerna lever upp till de 7 klassiska antagandena för regressionsmodeller.

5.1 Beskrivande statistik

<table>
<thead>
<tr>
<th>Sindex</th>
<th>Medelvärde</th>
<th>Min</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Max</th>
<th>Antal bolag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Världen</td>
<td>.0071267</td>
<td>-.12635</td>
<td>-.01299</td>
<td>.00955</td>
<td>.03339</td>
<td>.1385</td>
<td>704 st</td>
</tr>
<tr>
<td>Afrika</td>
<td>.0074757</td>
<td>-.20569</td>
<td>-.0235</td>
<td>.00878</td>
<td>.04726</td>
<td>.1706</td>
<td>11 st</td>
</tr>
<tr>
<td>Amerika</td>
<td>.007187</td>
<td>-.13967</td>
<td>-.0203</td>
<td>.00755</td>
<td>.04061</td>
<td>.15224</td>
<td>237 st</td>
</tr>
<tr>
<td>Asien</td>
<td>.0075902</td>
<td>-.15425</td>
<td>-.02318</td>
<td>.00845</td>
<td>.03925</td>
<td>.15453</td>
<td>243 st</td>
</tr>
<tr>
<td>Europa</td>
<td>.0072863</td>
<td>-.12515</td>
<td>-.01707</td>
<td>.01074</td>
<td>.03397</td>
<td>.13408</td>
<td>182 st</td>
</tr>
<tr>
<td>Oceanien</td>
<td>.0078997</td>
<td>-.24793</td>
<td>-.02848</td>
<td>.01252</td>
<td>.04959</td>
<td>.15045</td>
<td>31 st</td>
</tr>
<tr>
<td>Sverige</td>
<td>.0106676</td>
<td>-.13221</td>
<td>-.0142</td>
<td>.01478</td>
<td>.03981</td>
<td>.11746</td>
<td>18 st</td>
</tr>
<tr>
<td>USA</td>
<td>.0075118</td>
<td>-.15209</td>
<td>-.02163</td>
<td>.00783</td>
<td>.04257</td>
<td>.15232</td>
<td>192 st</td>
</tr>
<tr>
<td>Svarta listan</td>
<td>.0062758</td>
<td>-.19071</td>
<td>-.0233</td>
<td>.00839</td>
<td>.04188</td>
<td>.18495</td>
<td>65 st</td>
</tr>
</tbody>
</table>

Tabell 10. Statistik över branschernas sindex-avkastning

<table>
<thead>
<tr>
<th>Sindex</th>
<th>Medelvärde</th>
<th>Min</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Max</th>
<th>Antal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkohol</td>
<td>.00762</td>
<td>-.12489</td>
<td>-.01232</td>
<td>.01018</td>
<td>.03435</td>
<td>.14694</td>
<td>225 st</td>
</tr>
<tr>
<td>Betting</td>
<td>.00703</td>
<td>-.23542</td>
<td>-.03378</td>
<td>.00753</td>
<td>.04822</td>
<td>.22136</td>
<td>164 st</td>
</tr>
<tr>
<td>Tobak</td>
<td>.00824</td>
<td>-.21497</td>
<td>-.02224</td>
<td>.01365</td>
<td>.04388</td>
<td>.17241</td>
<td>44 st</td>
</tr>
<tr>
<td>Vapen</td>
<td>.00645</td>
<td>-.17740</td>
<td>-.02463</td>
<td>.01279</td>
<td>.03648</td>
<td>.17755</td>
<td>271 st</td>
</tr>
</tbody>
</table>

I tabell 11 kan vi utläsa hur den genomsnittliga årliga avkastningen räknas fram. Detta ligger till grund för utfallen i tabell 12.

Tabell 11. Index MSCI World årlig avkastning mellan 1998-2018

\[
Genomsnittlig årlig avkastning MSCI World = \left(\frac{Kurs_{31122018}}{Kurs_{01011998}} \right)^{\frac{1}{Antal år}} - 1
\]

6.9% = \left(\frac{405,992}{100} \right)^{\frac{1}{21}} - 1

Tabell 12. Årlig avkastning mellan 1998-2018

<table>
<thead>
<tr>
<th>Sindexportfölj</th>
<th>Årlig avkastning MSCI för region</th>
<th>Årlig avkastning sindex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Världen</td>
<td>6,90%</td>
<td>10,94%</td>
</tr>
<tr>
<td>Asien</td>
<td>7,01%</td>
<td>11,55%</td>
</tr>
<tr>
<td>Europa</td>
<td>5,77%</td>
<td>11,15%</td>
</tr>
<tr>
<td>Sverige</td>
<td>8,42%</td>
<td>15,73%</td>
</tr>
<tr>
<td>Alkohol</td>
<td>6,90%</td>
<td>11,59%</td>
</tr>
</tbody>
</table>

5.2 Regressioner utifrån geografi

I det här avsnittet kommer vi redovisa de regressioner som vi valt att presentera. De regressioner som visas under detta kapitel är endast Fama French-regressioner och de som gjorts med CAPM finns att se i appendix 1. Samtliga områden har testats genom CAPM men bara vissa har testats genom Fama French-modellen då urvalet och faktorer för modellen i vissa fall inte gick att matcha. Mer om detta står under 5.4.2 CAPM Regressioner.
5.2.1 Världen - Fama French, Newey-West

Tabell 13. Fama French three factor regression för hela världen

Fama French Världen, Newey-West

<table>
<thead>
<tr>
<th>Newey-West</th>
<th>Number of obs</th>
<th>F(3, 247)</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>VärldenMR</td>
<td>251</td>
<td>95.68</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Regression with Newey-West standard errors

| | Coef. | Std. Err. | t | Pr>|t| | [95% Conf. Interval] |
|----------|--------|-----------|---------|------|---------------------|
| VärldenMR | .7415405 | .0574901 | 12.90 | 0.000 | .6293071 - .8547738 |
| hmlglobal | .1431625 | .0913783 | 1.57 | 0.118 | -.0368176 - .3231426 |
| smbglobal | .0345837 | .0765707 | 0.45 | 0.654 | -.1170089 - .1861963 |
| _cons | .0036626 | .0019744 | 1.86 | 0.065 | -.0002261 - .0075814 |

I tabell 13 kan vi se en Fama French three factor regression av vår sindex som innefattar sin stocks från hela världen. Regressionen för Världen är en av två regressioner som gjorts med Newey-west test. Detta då feltermerna för Världen testats positivt för seriekorrelation i Durbin-Watson testet, detta förfarande förtydligas ytterligare under antagande 4 i kapitel 5.5 Regressionsdiagnostik. Denna regression visar en månatlig Jensens alpha på 0,366%, detta är “cons” i procentuell form. Detta betyder att enligt modellen har sin stocks för detta urval en riskjusterad avkastning om 0,366% för varje månad i snitt. Man kan utläsa att P-värdet är Regressionen för Världen är en av två regressioner som gjorts med Newey-west test. Detta då feltermerna för Världen testats positivt för seriekorrelation i Durbin-Watson testet. vilket ska vara lägre än 0,05 för att vara signifikant på fem procentnivån. Detta resultat skiljer sig från Lobe & Walkhausls (2016) resultat, som inte hittade någon signifikant överavkastning. Världens sindex har ett beta-tal på 0,742, detta innebär att systematiska risken är lägre än för world index, om index går upp 1% så tenderar sindex att gå 0.742%, motsvarande förändring vid nedgångar.

5.2.2 Svarta listan - Fama French, Robust-test

Tabell 14. Fama French three factor regression för svarta listan

Fama French Svarta listan Robust

| | Coef. | Std. Err. | t | Pr>|t| | [95% Conf. Interval] |
|----------|--------|-----------|---------|------|---------------------|
| VärldenMR | 1.01454 | .0652501 | 15.55 | 0.000 | .88660229 - 1.143088 |
| HMLVärlden | .1306642 | .1341469 | 1.35 | 0.179 | -.0535356 - .4044019 |
| SMBVärlden | -.030146 | .1215870 | -0.31 | 0.754 | -.2776749 - .2203549 |
| _cons | .0016525 | .0022322 | 0.74 | 0.458 | -.0027259 - .0050316 |

I tabell 14 kan vi se en Fama French three factor regression av vår sindex som innefattar sin stocks från Svarta listan. Denna regression visar en månatlig Jensens alpha på 0,165%, detta är “cons” i procentuell form. Detta betyder att enligt modellen så överavkastar sin
stocks för detta urval 0,165% för varje månad i snitt. Man kan utläsa att P-värde är 0,458 vilket ska vara lägre än 0,05 för att vara signifikant på fem procentnivån. Vidare går att utläsa en R-square på 0,5775, vilket kan ses som en procentats av hur mycket av fenomenet som modellen förklarar. Svarta listan har ett beta på 1,014.

5.2.3 Europa - Fama French, Robust-test

Tabell 15. Fama French three factor regression för Europa

Fama French Europa Robust
. regr europaer europaer hmeuropa smbeuropa, robust

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----------------|-------|-----------|-----|------|----------------------|
| europaer | | | | | |
| hmeuropa | | | | | |
| smbeuropa | | | | | |
| _cons | 0.0043605 | 0.0017655 | 2.47 | 0.014 | 0.000883 - 0.0078379 |

I tabell 15 kan vi se en Fama French three factor regression av vår sindex som innefattar sin stocks från Europa. Denna regression visar en månatlig Jensens alpha på 0,436%, detta är “cons” i procentuell form. Detta betyder att enligt modellen så överavkastar sin stocks för detta urval 0,436% varje månad i snitt. Man kan utläsa att P-värdet är 0,014 vilket ska vara lägre än 0,05 för att vara signifikant på fem procentnivån. Vidare går att utläsa en R-square på 0,5386, vilket kan ses som en procentats av hur mycket av fenomenet som modellen förklarar. Europa har nära statistiskt signifikant positivt exponering mot HML-faktorn vilket kan betyda att Europeiska sindex kan innehålla många värdebolag jämfört med en neutral portfölj som har noll exponering. Den överavkastning som vi ser i detta test skiljer sig emot Lobe & Walkhäuserl (2016) som inte hittade någon signifikant överavkastning för Europa. Europas sindex har ett beta på 0,689 i jämförelse med Europas index.
5.2.4 USA - Fama French, Newey-West

Tabell 16. Fama French three factor regression för USA

Fama French USA

\[\text{reg newey usamr3 usamr4 hmlusa smbusa, lag(4)} \]

Regression with Newey-West standard errors

| | Coef. | Std. Err. | t | F>|t| | [95% Conf. Interval] |
|---|-------|-----------|-----|-----|---------------------|
| usamr4 | .779459 | .0777288 | 10.03 | 0.000 | .6263632 .9325549 |
| hmlusa | .1235499 | .1077492 | 1.15 | 0.253 | -.0886746 .3557744 |
| smbusa | -.0080588 | .0087733 | -.11 | 0.911 | -.1681511 .1500335 |
| _cons | .0057781 | .0027207 | 1.39 | 0.166 | -.0015807 .0091369 |

I tabell 16 kan vi se en Fama French three factor regression av vår sindex som innefattar sin stocks från USA. Regressionen för USA är en av två regressioner som gjorts med Newey-west test. Detta då feltermerna för USA testats positivt för seriekorrelation i Durbin-Watson testet, detta förfarande förtydligas ytterligare under antagande 4 i kapitel 5.5 Regressionsdiagnostik. Denna regression visar en månatlig Jensens alpha på 0,378% , detta är “cons” i procentuell form. Detta betyder att enligt modellen så överavkastar sin stocks för detta urval 0,378% varje månad i snitt. Man kan utläsa att P-värde är 0,166 vilket ska vara lägre än 0,05 för att vara signifikant på fem procentnsnivån. USAs sindex har ett beta på 0,779 i jämförelse med USAs index.

5.2.5 Sverige - Fama French, Robust-test

Tabell 17. Fama French three factor regression för Sverige

Fama French Sverige

\[\text{regr sverigeer sverigemr hmlsveden smbsswed, robust} \]

Linear regression

| | Coef. | Std. Err. | t | F>|t| | [95% Conf. Interval] |
|---|-------|-----------|-----|-----|---------------------|
| sverigeer | .2063127 | .0532993 | 3.87 | 0.000 | .1013336 .3112918 |
| hmlsveden | .0949884 | .0535493 | 1.77 | 0.077 | -.0104031 .2004598 |
| smbsswed | .0810164 | .0643979 | 1.26 | 0.210 | -.0458209 .2078537 |
| _cons | .0093528 | .0026988 | 3.47 | 0.001 | .0040373 .0146684 |

I tabell 17 kan vi se en Fama French three factor regression av vår sindex som innefattar sin stocks från Sverige. Denna regression visar en månatlig Jensens alpha på 0,935%, detta är “cons” i procentuell form. Detta betyder att enligt modellen så överavkastar sin stocks för detta urval 0,935% varje månad i snitt. Man kan utläsa att P-värde är 0,001 vilket ska vara lägre än 0,05 för att vara signifikant på fem procentnsnivån. Vidare går att utläsa en R-square på 0,1081, vilket kan ses som en procentsats av hur mycket av fenomenet som modellen förklarar. Sveriges sindex har ett beta-tal på 0,206 jämfört med det jämförande Sverige indexet.
5.3 Regressioner utifrån bransch
I det här avsnittet kommer vi redovisa regressioner med bolagen indelade efter branscher. De regressioner som visas under detta kapitel är endast Fama French-regressioner. Till skillnad från tidigare regressioner som är gjorda utifrån regioner, så ställs samtliga branscher i jämförelse med världsindex. Detta då branscherna innehåller bolag från hela världen, och bör således få sin avkastning jämförd med ett världsindex. Branscherna är som tidigare beskrevit i kapitel 4.2 Data & urval, uppdelade under uppsamlingsnamnen Alkohol, Betting, Tobak & Vapen.

5.3.1 Alkohol - Fama French, Robust-test
Tabell 18. Fama French three factor regression för Alkohol

| | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----------------------|--------|------------------|-------|------|------------------------|
| WärldenMR | 0.557499 | 0.0689564 | 8.09 | 0.000 | 0.4218323 - 0.693674 |
| HMLVärlden | 0.0372632 | 0.0382135 | 0.40 | 0.689 | -0.1457605 - 0.2202769 |
| SMBVärlden | 0.0791102 | 0.0387585 | 2.02 | 0.041 | -0.0900314 - 0.2482518 |
| _cons | 0.0051952 | 0.0020787 | 2.48 | 0.013 | 0.001084 - 0.0093068 |

Vi kan se i tabell 18 att alkohol genererar en signifikant överavkastning som motsvarar en jensens alpha på 0,520% per månad. Regressionens p-tal är 0,013 vilket är inom fem procentigt signifikansnivån. Regressionens r-squared är 0,331 vilket motsvarar en förklaringsgrad om 33,1%. Alkohols sindex har ett beta på 0,558 i jämförelse med världsindex.

5.3.2 Betting - Fama French, Robust-test
Tabell 19. Fama French three factor regression för Betting

| | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----------------------|--------|------------------|-------|------|------------------------|
| WärldenMR | 1.109759 | 0.0987113 | 11.24 | 0.000 | 0.9153357 - 1.304182 |
| HMLVärlden | -0.0182018 | 0.1260728 | -0.16 | 0.873 | -0.2605773 - 0.2261738 |
| SMBVärlden | -0.1525065 | 0.1251554 | -1.18 | 0.235 | -0.4069524 - 0.1015367 |
| _cons | 0.0027416 | 0.0034336 | 0.82 | 0.412 | -0.0038308 - 0.0093338 |

I tabell 19 kan vi se en Fama French three factor regression av vår sindex som innefattar sin stocks från Betting. Denna regression visar en månatlig Jensens alpha på 0,275%.
Detta betyder att enligt modellen så överavkastar sin stocks för detta urval 0,275% varje månad i snitt. Man kan utläsa att P-värdet är 0,412 vilket ska vara lägre än 0,05 för att vara signifikant på fem procentsnivån. Vidare går att utläsa en R-square på 0,407. Bettings sindex har ett beta på 1,110 i jämförelse med världsindeks.

5.3.3 Tobak - Fama French, Robust-test

Tabell 20. Fama French three factor regression för Tobak

Fama French tobak robust

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----------------|-------|-----------|-------|-----|----------------------|
| VarldenMR | .4774E-5 | .0924E-7 | 5.16 | 0.000 | .2953E-01 , .6598E-09 |
| HMLVärlden | .3403E-1 | .1539E-2 | 2.22 | 0.027 | .0318E-01 , .6428E-1 |
| SMBVärlden | .0017E+0 | .1405E-1 | 0.01 | 0.990 | -.1571E-1 , .2751E+0 |
| cons | .0052E+0 | .0003E+0 | 1.59 | 0.113 | -.0011E+0 , .0117E+0 |

I tabell 20 kan vi se en Fama French three factor regression av vår sindex som innefattar sin stocks från Tobak. Denna regression visar en månalogt Jensens alpha på 0,524%, detta är "cons" i procentuell form. Detta betyder att enligt modellen så överavkastar sin stocks för detta urval 0,524% varje månad i snitt. Man kan utläsa att P-värdet är 0,113 vilket ska vara lägre än 0,05 för att vara signifikant på fem procentsnivån. Vidare går att utläsa en R-square på 0,1954, vilket kan ses som en procentsats av hur mycket av fenomenet som modellen förklarar. Tobaks sindex har ett beta på 0,477 i jämförelse med världsindeks.

5.3.4 Vapen - Fama French, Robust-test

Tabell 21. Fama French three factor regression för Vapen

Fama French Vapen robuart

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----------------|-------|-----------|-------|-----|----------------------|
| VarldenMR | .9942E+0 | .0671E+0 | 14.81 | 0.000 | .8620E+09 , 1.1261E+1 |
| HMLVärlden | .1149E+0 | .1079E+0 | 1.06 | 0.288 | -.0976E+02 , .3274E+0 |
| SMBVärlden | .0670E+0 | .1027E+0 | 0.65 | 0.514 | -.1351E+02 , .2693E+0 |
| cons | .0020E+0 | .0021E+0 | 0.96 | 0.336 | -.0002E+01 , .0061E+0 |

I tabell 21 kan vi se en Fama French three factor regression av vår sindex som innefattar sin stocks vars verksamhet är inom vapenindustrin. Denna regression visar en månalogt Jensens alpha på 0,203%. Man kan utläsa att P-värdet är 0,336 vilket ska vara lägre än
0,05 för att vara signifikant på fem procentsnivån. Vidare går att utläsa en R-square på 0,615. Sindexet med vapenaktier har ett beta på 0,994 jämfört med index för hela världen.

5.4 Sammanställning av regressionerna
Tabell 22. Sammanställning av resultat från genomförda regressioner

<table>
<thead>
<tr>
<th>Sindex</th>
<th>CAPM - alpha</th>
<th>P-värde CAPM</th>
<th>Fama French three factor model - alpha</th>
<th>P-värde FF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Världen</td>
<td>0,404%</td>
<td>0,017</td>
<td>0,366%</td>
<td>0,065</td>
</tr>
<tr>
<td></td>
<td>(4,956% per år)</td>
<td></td>
<td>(4,481% per år)</td>
<td></td>
</tr>
<tr>
<td>Svarta listan</td>
<td>0,214%</td>
<td>0,350</td>
<td>0,165%</td>
<td>0,458</td>
</tr>
<tr>
<td></td>
<td>(2,598% per år)</td>
<td></td>
<td>(1,998% per år)</td>
<td></td>
</tr>
<tr>
<td>Asien</td>
<td>0,601%</td>
<td>0,022</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>(7,455% per år)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afrika</td>
<td>0,503%</td>
<td>0,111</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>(6,206% per år)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europa</td>
<td>0,512%</td>
<td>0,007</td>
<td>0,436%</td>
<td>0,014</td>
</tr>
<tr>
<td></td>
<td>(6,320% per år)</td>
<td></td>
<td>(5,359% per år)</td>
<td></td>
</tr>
<tr>
<td>Amerika</td>
<td>0,351%</td>
<td>0,119</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>(4,294% per år)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oceanien</td>
<td>0,263%</td>
<td>0,317</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>(3,202% per år)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sverige</td>
<td>0,962%</td>
<td>0,001</td>
<td>0,925%</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>(12,175% per år)</td>
<td></td>
<td>(11,682% per år)</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>0,374%</td>
<td>0,195</td>
<td>0,378%</td>
<td>0,166</td>
</tr>
<tr>
<td></td>
<td>(4,581% per år)</td>
<td></td>
<td>(4,632% per år)</td>
<td></td>
</tr>
<tr>
<td>Alkohol</td>
<td>0,529%</td>
<td>0,013</td>
<td>0,520%</td>
<td>0,013</td>
</tr>
<tr>
<td></td>
<td>(6,536% per år)</td>
<td></td>
<td>(6,422% per år)</td>
<td></td>
</tr>
<tr>
<td>Betting</td>
<td>0,271%</td>
<td>0,416</td>
<td>0,274%</td>
<td>0,412</td>
</tr>
<tr>
<td></td>
<td>(3,301% per år)</td>
<td></td>
<td>(3,338% per år)</td>
<td></td>
</tr>
<tr>
<td>Tobak</td>
<td>0,616%</td>
<td>0,060</td>
<td>0,524%</td>
<td>0,113</td>
</tr>
<tr>
<td></td>
<td>(7,648% per år)</td>
<td></td>
<td>(6,472% per år)</td>
<td></td>
</tr>
<tr>
<td>Vapen</td>
<td>0,234%</td>
<td>0,271</td>
<td>0,203%</td>
<td>0,336</td>
</tr>
<tr>
<td></td>
<td>(2,844% per år)</td>
<td></td>
<td>(2,463% per år)</td>
<td></td>
</tr>
</tbody>
</table>

I tabellen ovan har vi sammanställt resultaten från samtliga regressioner. I den utsträckning det har varit möjligt har områdena testats enligt både CAPM och Fama French. Vissa områden har saknat faktorer för Fama French three factor modellen och har
därför inte genomförts regression på. Dessa är lämnade som N/A i de områdena i tabellen och förklaras mer utförligt under 5.4.2 CAPM Regressioner senare.

5.4.1 Sammanställning av årlig överavkastning

Som syns i den grafiska sammanställningen nedan i figur 3 kan man utläsa de regioner som överavkastar och har ett p-värde under/nära signifikans på fem procentsnivån. Här syns tydligt att Sverige har den högsta överavkastningen på 11,682% årlig överavkastning och världen som helhet har lägst överavkastning med 4,481% årlig överavkastning. Man bör ha i åtanke att världssindex består av samtliga regioner som vissa var för sig inte nått upp till en signifikant överavkastning (som Afrika, Oceanien, Amerika) men att som helhet har världssindex en signifikant överavkastning med CAPM (P-värde 0,017) och är nära signifikant överavkastning med Fama French (P-värde 0,065).

![Figur 3. Årlig överavkastning för signifikanta & nära signifikanta regioner.](image)

Där (FF) indikerar att avkastningen är beräknad med Fama French three factor model. (CAPM) indikerar att avkastningen är beräknad med CAPM. CAPM har använts då SMB- och HML-faktorer för Asien inte har funnits tillgängliga.

5.4.2 CAPM-regressioner

Om man däremot granskar de resultat vi fick fram för dessa genom att använda CAPM, kan man se att Världen, Asien, Europa Sverige och alkohol är signifikant på fem procentsnivån. Sin stocks i Asien levererar enligt metoden CAPM en överavkastning på 0,601% varje månad i förhållande till dess regionala index. Sin stocks i de andra tre regionerna (som endast beräknats med CAPM) överavkastar mellan 0,263-0,503% månatligen, dock är dessa inte signifikanta på den signifikansnivå vi har valt för testen.
CAPM regressionen för hela världen resulterar i en signifikant överavkastning på 0,404%.

Av de CAPM regressioner för de olika branscherna är endast alkohol signifikant på fem procentiga signifikansnivån. Denna signifikanta överavkastning omfattar 0,529% per månad vilket motsvarar en årlig överavkastning om 6,536%. Resterande branscher genererar ingen signifikant överavkastning. Sindexen för tobak har visat en månatlig överavkastning om 0,616%, p-talet är 0,060 vilket nästan är signifikant.

5.4.3 Fama French-regressioner

Resultaten från de genomförda Fama French three factor regressionerna är blandade. Resultaten är signifikanta på den fem procentiga signifikansnivån för område Europa och Sverige. Sverige var även signifikant på den 99 procentiga signifikansnivån. Svarta listan och USA var ej signifikant så något tillförlitliga resultat från dessa sindex kan därför inte presenteras. Den sindex med högst signifikant alpha har Sverige med en månatlig överavkastning på 0,925% och den sindex med lägst signifikant alpha är för hela världen på 0,366%. Resultaten visar att det finns skillnader mellan de olika världsdeltarna i både om dess överavkastning är signifikant eller inte men även överavkastningens storlek.

Världen genererade en månatlig alpha på 0,366%. Denna alpha är inte signifikant på den fem procentiga nivån men med ett p-tal 0,065 är den riskjusterade avkastningen nära och man kan säga att den är marginellt signifikant.

De regressioner som har gjorts för de sindex uppdelat efter bransch är endast alkohol signifikant på fem procentiga signifikansnivån. Alkohol genererade en överavkastning om 0,52% per månad vilket motsvarar en årlig överavkastning om 6,422% per år. Resterande branschindex var ingen, var för sig, signifikant på fem procentiga signifikansnivån.

5.4.4 Illustration av avkastning

Det finns en skillnad i riskjusterad avkastning och faktisk avkastning, det alpha som vi har sett genom våra regressioner visar riskjusterad avkastning. För att få en bild av den faktiska avkastningen som har genererats av vårt urval har vi valt att presentera några diagram som visar detta.

För de olika branscherna var det endast alkohol som hade en signifikant överavkastning och vi väljer därför att endast illustrera den. Sindexen för tobak var inte signifikant men dess p-tal på 0,06 i CAPM och 0,113 i FF var relativt nära signifikansnivån på 0,05 till skillnad från vapen med p-tal på 0,271 i CAPM samt 0,336 i FF och betting med 0,416 i CAPM samt 0,412 i FF som låg längre ifrån. Av den anledningen väljer vi att även illustrera avkastningen för Tobak i ett diagram. Det vi kan se i Figur 5 nedan är att avkastningen för sindexen för tobak är totalt något högre än den för alkohol.

I figur 6 nedan ser vi avkastningen för sindexen med de olika svarta listorna som jämförs med världsindeks. Sindexens totala avkastning är 714 % för de 21 senaste åren. Avkastningen för världsindeks, som är den jämförande indexen var 406 % för samma tidsperiod.
5.5 Regressionsdiagnostik

Här kommer vi att undersöka de regressioner som utförts mot de klassiska antagandena av Studenmund (2014. s. 98) för att regressionen ska fungera. Antagandena och dess förklaringar återfinns under kapitel 4.7.

1. **Regressionsmodellen är linjär, är korrekt specificerad och har en additiv felterm.**

 Både CAPM och FAMA French three factor model är linjära regressionsmodeller. Då modellerna samt all data är inhämtad från externa källor får de anses som korrekt specificerade. Feltermen är lika med noll per konstruktion i OLS.

2. **Feltermen har villkorat medelvärde lika med noll.**

3. **Alla förklarande variabler är inte korrelerade med feltermen.**

 Då feltermen är noll kan vi anta att X-variabeln och feltermen inte är positivt korrelerade. Om de vore korrelerade hade den estimerade koefficienten (coef) blivit högre än vad den annars hade blivit. Eftersom feltermen är skilt från X-variabeln, uppfylls detta krav.

4. **Observationer av feltermen är inte korrelerade med varandra.**

5. **Feltermens varians är konstant**

 I genomförandet av testerna har det problem med heteroskedasticitet uppstått. Av denna anledning har vi valt att använda robusta standardfel på samtliga test. Detta innebär att samtliga redovisade regressioner är genomförda med funktionen robusta standardfel i stata.
6. Ingen förklarande variabel är en perfekt linjär funktion av någon annan förklarande variabel (ingen perfekt multikollinearitet).

Tabell 23. VIF-test

<table>
<thead>
<tr>
<th>Region</th>
<th>VIF-värde (Medelvärde)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Världen</td>
<td>1,48</td>
</tr>
<tr>
<td>Europa</td>
<td>1,36</td>
</tr>
<tr>
<td>Sverige</td>
<td>1,06</td>
</tr>
<tr>
<td>USA</td>
<td>1,26</td>
</tr>
</tbody>
</table>

7. Feltermen är normalfördelad.
För att göra hypotesprövningar används en estimerad regressionskoefficient (coef) för att undersöka det ekonomiska fenomenet. Exempelvis kan man undersöka om ett sindex överavkastar eller inte i förhållande till ett vanligt index för samma region. Då urvalet är så pass stort antas feltermen vara normalfördelad och medelvärdet är noll per konstruktion med OLS.

5.6 Hypotesprövning
När regressionerna är genomförda och alla antaganden är uppfyllda kan vi pröva de hypoteser som vi listat under kapitel 3.5 Hypoteser. Om vi genom våra regressioner kan förkasta nollhypotesen betyder det att vi har empiriska belägg att alternativhypotesen H1 stämmer med en fem procentig signifikansnivå. Om vi börjar med Hypotes 1, där frågan om sin stocks överavkastar i förhållande till index över tid enligt nedan:

Hypotes 1: Överavkastar sin stocks i förhållande till index över tid?
H0 : Jensens Alpha = 0
H1 : Jensens Alpha ≠ 0

Här kan vi individuellt för Europa och Sverige, med Fama French three factor model förkasta H0 på fem procents signifikansnivå. Världen som helhet nådde med sitt p-tal på 0,065 (som återfinns i tabell 13) inte riktigt till gränsen vid 0,05 med Fama French-modellen, och kan därför inte förkasta H0. Dock är marginalen härfin och kan inte helt bortses ifrån då Världen blevsignificant med CAPM med ett p-värde på 0,017 (återfinns i Appendix 1). Vi har även signifikant riskjusterad avkastning för Asien, där CAPM har använts som modell. Samtliga av dessa regioner förutom världen har en överavkastning som är signifikant större än 0 och har enligt regressionen ett P-värde under 0,05 vilket har listats som krav för att regressionens resultat ska vara tillförlitligt. Således kan vi förkasta
H0 för dessa regioner förutom Världen. För resterande regioner, Afrika, Amerika, Oceanien och USA har vi individuellt inte kunnat påvisa en signifikant överavkastning i våra regressioner och i dessa fall kan vi således inte förkasta H0.

Vidare för Hypotes 2 testas om Svarta listan i förhållande till världsindex har en signifikant överavkastning enligt nedan:

Hypotes 2: Överavkastar svarta listans innehav i förhållande till index?
H0: Svärta listan = 0
H1: Svärta listan ≠ 0

För denna hypotesprövning har Fama French three factor model använts. Regressionen visar en överavkastning för svarta listan men ett P-värde på 0,458 (återfinns i tabell 14) är inte statistiskt signifikant på fem procentsnivån. Vidare blev inte heller Svärta listan signifikant när den testades med CAPM, då med ett p-värde på 0,350 (återfinns i Appendix 1). Således kan vi inte förkasta H0 och kan inte påvisa någon statistiskt signifikant överavkastning för svarta listan i förhållande till världsindex.

5.7 Robusthetstest - resultat
Tabell 24. Robusthetstest uppdelat i regioner

<table>
<thead>
<tr>
<th>Sindex</th>
<th>Fama French</th>
<th>P-värde FF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utan Asien</td>
<td>0,346%</td>
<td>0,104</td>
</tr>
<tr>
<td>Utan Afrika</td>
<td>0,366%</td>
<td>0,066</td>
</tr>
<tr>
<td>Utan Europa</td>
<td>0,335%</td>
<td>0,125</td>
</tr>
<tr>
<td>Utan Amerika</td>
<td>0,457%</td>
<td>0,008</td>
</tr>
<tr>
<td>Utan Oceanien</td>
<td>0,366%</td>
<td>0,066</td>
</tr>
</tbody>
</table>

För att få en bild över robustheten av våra resultat har robusthetstest genomförts. I tabell 24 ovan visas resultaten från testen där de olika regionerna har exkluderats, var för sig, ur urvalet. Det kan konstateras är att samtliga regressioner pekar på en överavkastning varav regressionerna som excluderar Afrika, Amerika och Oceanien är signifikanta. I de tester där Europa exkluderas samt när Asien exkluderas är ej signifikanta, detta säger att de överavkastningar som testen visar kan vara på grund av slumpen.

Tabell 25. Robusthetstest uppdelat i bransch

<table>
<thead>
<tr>
<th>Sindex</th>
<th>Fama French</th>
<th>P-värde FF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utan Alkohol</td>
<td>0,319%</td>
<td>0,135</td>
</tr>
<tr>
<td>Utan Betting</td>
<td>0,385%</td>
<td>0,055</td>
</tr>
<tr>
<td>Utan Tobak</td>
<td>0,300%</td>
<td>0,069</td>
</tr>
<tr>
<td>Utan Vapen</td>
<td>0,475%</td>
<td>0,047</td>
</tr>
</tbody>
</table>
Tabell 25 ovan visar resultaten av de robusthetstest som genomförts där de olika branscherna har exkluderats var för sig. Samtliga tester som har genomförts visar på pekar på att det finns en överavkastning då alpha är positivt. P-talet för testerna är dock inom vår valda signifikansnivå i de tester där betting har exkluderats samt där vapen har exkluderat. Detta innebär att för de tester där alkohol har exkluderats ur urvalet samt där tobak har exkluderat är ej signifikanta och överavkastningen som testen visar kan bero på slumpen.
6. Analys

I denna del kopplar vi studiens resultat till de tidigare studier som har använts detta för att besvara studiens frågeställning och uppfylla dess syfte. Kapitlet är uppdelat i tre delar: Regionindelning; Branschindelning; Svarta listan.

6.1 Regionindelning

Det vi kan se genom vår kartläggning över sin stocks avkastning är att endast Europa och Asien är de världsdelar som genererar en signifikant överavkastning. Av vårt urval motsvarar sin stocks från Europa och Asien sammanlagt 60,37%. Att dessa två världsdelar motsvarar en majoritet av urvalet kan förklara varför vi har hittat en nära signifikant överavkastning för hela världen trots att övriga världsdelar inte är signifikanta. Det vi kan fastställa är att givet vårt urval samt den valda tidsperioden finns det en riskjusterad avkastning i Europa och Asien samt en möjlighet till överavkastning för sin stocks över hela världen.

Det huvudsakliga resultatet av denna studie säger att det finns en möjlighet i att generera en nära signifikant överavkastning genom att investera i sin stock runt om i hela världen. Resultaten från våra robusthetstester säger dock att detta fenomen inte är generellt runt om i hela världen. Våra tester visar att Europa och Asien är de regioner som bidrar till en nära signifikant riskjusterad avkastning för världen. I och med detta så kan vi inte visa på en nära signifikant riskjusterad avkastning om man exkluderar någon av dessa regioner från Världens regression. Något som är viktigt att notera är att av de tester som är gjorda för sig med CAPM så är det Europa och Asien de enda regioner som genererar en nära signifikant riskjusterad avkastning. Det är logiskt att, om man exkluderar någon annan region än Europa eller Asien kommer p-värdenet för världen att minska.

6.2 Branschindelning

När regressioner för enskilda branscher genomfördes fick vi ytterligare resultat att lägga till avkastningen som helhet. Man kan se att den enda branschen som signifikant överavkastar är alkohol. Alkohol hade en månatlig riskjusterad avkastning på 0,520%, för Fama French three factor model, vilket årligen ger en riskjusterad avkastning på 6,422% över index. Tätt följt, med ett P-tal på 0,113 kommer branschen tobak, som även den tillhörde de branscher som hade högst månatliga riskjusterade avkastningar med 0,524% respektive 6,472% årlig riskjusterad avkastning. Lobe & Walkshäusl (2016) hittade ingen signifikant överavkastning för deras index med olika branscher. Likt dem hittar vi inte någon signifikant överavkastning för de enskilda branscherna betting, tobak och vapen. Det som skiljer vår studie mot deras är att vi hittar en signifikant överavkastning för alkohol, vilket är mer likt Fabozzi’s et al. (2008) resultat där alla deras branscher var för sig genererade en signifikant överavkastning.

Det går att utläsa från robusthetstesterna där de olika branscherna har exkluderats att endast de tester där vapen och betting har exkluderats är de som är signifikanta. Detta betyder att både branscherna alkohol och tobak har en hög avkastning som är eller är nära till att vara signifikanta var för sig. Resterande robusthetstest av denna sort genererar inte en signifikant överavkastning när alkohol eller tobak exkluderas.
6.3 Svarta listan
Vi hittade inte någon statistiskt signifikant överavkastning för våra svarta listor. Det betyder i förlängningen att på i vår hypotes 2 kan vi inte förkasta H0. Än så länge är svarta listans avkastning att likställa med index, då överavkastningen som ägt rum inte funnits signifikant på fem procentsnivån som vi har satt som krav för att kunna förkasta H0.
7. Diskussion
Utifrån vad som framkommit i analysen kommer vi här att diskutera upptäckterna. Här kommer även studiens författare att diskutera deras egna tankar för olika förklaringar kring studiens resultat.

En observation är att svarta listan, om än inte blev signifikant på fem procentnivå i våra regressor, har presterat lite sämre än de andra sindexarna - både sindex för Världen och regionala sindex. Om regressionen blivit signifikant hade en slutsats att dra vara att de banker och fonder som har svarta listor inte vill svartlista vissa bolag just för att de presterar så bra. Just nu verkar det som att institutioner har svartlistat bolag som går ganska bra, men undvikit att svartlista de bolag som gått allra bäst. Svarta listan är en selektiv exkludering, då de inte utgår ifrån en bransch och svartlistar samtliga bolag inom branschen, utan de har handplockat bolag inom olika branscher som aktivt exkluderas, medan dess branschkollegor inte exkluderas av olika anledningar.

När vi påbörjade studien och började gå igenom tidigare litteratur och forskning inom ämnet, visade det sig snabbt att det låg stort fokus på sin stocks i USA. Samtliga tidigare studier vi granskat med undantag av Lobe & Walkshäuls (2016) har funnit att sin stocks faktiskt överavkastar, och många av studierna har med USA i sina statistiskt signifikanta svar. Det kom som en förvåning för oss när regionen Amerika, som är en sammansättning av länder inom Nord- och Sydamerika, som även Lobe & Walkshäusl (2016) använt sig av, visade sig inte överavkasta med en fem procentig signifikansnivå. Vår initiala tanke var att det var något som blivit fel, att några bolag fattades eller om vi jämfört med fel index i regressionen. Efter att ha undersökt efter eventuella fel och inte hittat några valde vi att prova isolera sin stocks från enbart USA, för att se om resterande av Amerika var problemet till det höga p-talet. När vi väl separerat sin stocks för USA från regionen Amerika och bytt till en jämförelsebar index som endast berör USA gjorde vi en ny regression, som finns att se under kapitel 5.2.4 USA - Fama French, Newey-West. Även detta test visade sig vara inte signifikant på den nivån som våra regressor kräver.

Vi ställde oss frågan hur tidigare studier kunde ha fått USA som signifikant överavkastande men inte våra resultat, när vi haft samma tillvägagångssätt. Efter att ha diskuterat fenomenet så har vi antagit att vår valda tidsperiod är den största faktorn som skiljer vår studie från tidigare studier, och drar därför slutsatsen att under tidsintervallet 1998-2018 har inte sin stocks i USA överavkastat på en fem procentig signifikansnivå, trots att det är fullt möjligt att samma bolag överavkastat under tidigare tidsperioder. Givet att man skulle ompröva samma regression fast med en längre tidshorisont bakåt, hade eventuellt kunna generera ett annat resultat som hade kunnat överensstämma med tidigare forskning.

En annan anledning till att våra resultat skiljer sig åt kan vara på grund utav att från och med 2007 har ett flertal studier om just sin stocks publicerats och flera av dessa har studerat just USA. Dessa studier kan ha spridit kunskapen om att eventuell överavkastning fanns på denna marknad. Detta kan senare ha gjort att flera investerare har valt att investera i sin stocks där och därmed har aktierna prisat in detta, vilket gjort att den signifikanta överavkastningen har försvunnit. En annan förklaring kan vara att företagen på denna marknad har börjat agera mindre syndfullt och därmed lockat fler
investerare. Vi kan bara spekulera kring detta då studien i sig inte fokuserat mer djupgående på företagens verksamheter eller investorarrelationer.

En annan effekt som bidragit till detta kan vara att den svenska sindexen endast är sammansatt av totalt 18 bolag (se fördelningen i tabell 6 under kapitel 4.2 Urval & data). Antalet bolag i sig är i genomsnitt ganska normalt om man jämför med andra länder förutom Kina och USA som verkligen sticker ut med stora antal sin stocks, men dessa länder är också avsevärt större i termen av befolkning och ekonomiskt styrka. Desto färre individuella bolag som ingår i ett index desto större påverkan har dessa bolag på sindexen. Exempelvis följer Bolaget metoden som gynnar några av dessa bolag så påverkar detta indexet i stor utsträckning i jämförelse med ett en diversifierad index med många bolag. Med andra ord så kan exempelvis spelbolagen i Sverige, som är 7 till antalet i vårt urval, ha priser på bolagen som är generellt förbättrat mellan åren 1998-2018 på grund av andra faktorer än att investerare har bortsett från att investera i dem. Om så är fallet skulle det under perioden ha lyft Sveriges Sindex mycket i förhållande till marknadsindex, vilket i regressionen visas som en signifikant starkt överavkastning.

En ytterligare aspekt är att det finns 7 sin stocks från Sverige som är verksamma under “aerospace & defence” dvs. Vapen. Denna kan även de ha fått en bra utveckling då klimatet i omvärlden har blivit instabilare och konflikter har brett upp. Dessa bolag hamnar inte själv i konflikter i den benämningen, men de säljer försvarutrautrustning till de parter som ingår i konflikten, vilket betyder att desto fler konflikter desto lönsamare för företag som är verksamma inom kategorin för försvar. Huvudpoängen är att det svenska sindexet är väldigt viktat mot både betting och vapen, vilket i våra ögon är två branscher som har gått starkt under den valda tidsperioden.

En annan del som kan ha påverkat denna studies utfall i jämförelse med tidigare studier är definitionen av sin stocks vilket har påverkat urvalet. Denna studie har valt att bortse
från bolag som uttryckligen är verksamma inom energisektorn såsom kärnkraft och kolindustrin, samt även bolag som kränkt mänskliga rättigheter och använt sig av djurförsök. Varför dessa har exkluderats har tidigare redogjorts för i kapitel 1.6 Avgränsningar, dess bortfall har givetvis påverkat urvalet och således utfallet. Om bolag som är aktiva inom dessa sektorer/aktiviteter inkluderats i urvalet hade hypotetiskt både överavkastningen och signifikansnivåer kunnat skifta. Detta är något som författarna av denna studie är medvetna om och öppnar dörren för att vidare studier har möjlighet att undersöka djupare, vilket förtydligas mer under kapitel 8.2 Framtida forskning.

De skillnader vi har sett mellan vårt resultat och tidigare studier kan bero på olikheter i de valda regressionsmodellerna. Vi har använt CAPM och Fama French three factor model i vår analys. Lobe & Walkshäusl (2016) använder förutom CAPM och FF även CNZ (Three factor model av Chen) och FFC (Four factor model av Fama, French & Carhart), som finns fördelaktigare tidigare i Tabell 2. Ingen av Lobe & Walkshäusl (2016) tester visades statistiskt signifikanta oavsett modell. Det går att diskutera huruvida användandet av olika modeller har lett till olika resultat mellan tidigare studier och denna studie. Men vid användandet av samma modeller men p-värdet och avkastningen skiljer sig åt, bör det endast vara det valda tidsintervallet för observationerna, dvs. årtälet, samt branscherna som inkluderats i studierna som ligger till grund för de olika resultaten.

8. Slutsats

I detta avsnitt kommer eventuella slutsatser från fynden att dras. Det finns olika slutsatser man kan dra utifrån studiens resultat.

Studien har även undersökt om en studs som faktiskt har blivit svartlistade av institutioner överavkastar. Studien hittade ingen signifikant överavkastning för den sammanslagna svarta listan, men vi misstänker att det har sin förklaring vilket vi redogör för hur man kan forska efter bevis för under kapitel 8.2 Framtida forskning.

8.1 Överavkastning eller inte

Som man kan se förekommer det olika resultat i olika delar av världen som överavkastar med korrekt signifikansnivå på regressionstesterna. När man sammenställer kan man se att 2 regioner av samtliga 5 världsdeler, som tillsammans står för 60,37% av det totala urvalet har en signifikant överavkastning. Syftet med studien är som tidigare sagt inte att lägga någon typ av köpråd för sin stocks eller att påverka investerares inställning gentemot sin stocks. Men utför ett urval som speglar hela världen kan vi påvisa att om en investerare väljer att investera i en studs, kan man med fördel av våra test göra det i antingen Asien eller Europa med hänvisning till att dessa regioner hade en signifikant överavkastning i förhållande till risken för investeringen på mellan 5,359% per år för Europa (enligt Fama French-modellen) och 7,455% per år för Asien (enligt CAPM). Världen som helhet blev inte signifikant med Fama french-modellen om än den ligger väldigt nära gränsvärde. Sin stocks för Världen blev dock signifikant när den testades med CAPM, vilket tyder på att det kan ligga en viss sanning i att världen som helhet kan med statistisk signifikans avkasta bättre än jämförelse index. Resultat för vilka länder inom regionerna som har presterat bäst kan och om eventuelt dessa ha gett en ännu högre avkastning historiskt kan vi inte uttala oss om då sådana test inte är genomförda med undantag av USA och Sverige. Vidare har vi sett en signifikant överavkastning inom alkoholbranschen. Detta innebär att enligt vår studie är alkoholbranschen den mest fördelaktiga utifrån de fyra branscherna som vi har undersökt.

Vi har inte med fem procentig signifikansnivå empiriska belägg för att fastställa att sin stocks överavkastar i hela världen. Det vi kan se är att det finns tydliga tendenser till det, man skulle kunna säga att den riskjusterade avkastningen är marginellt signifikant för
Världen. Studiens empiriska belägg räcker för att påvisa att riskjusterad överavkastning förekommer, men att en investerare inte kan investera blint i sin stocks över hela världen, men kan genom selektiva beslut uppnå en överavkastning beroende på vald exponering mot specifika branscher och regioner.

Om man vidare granskar regressionen för Sverige så får vi ett statistiskt signifikant resultat, både på fem procentsnivån men även på 99 procentsnivån, då P-värdet blir låga 0,001 för nationen i förhållande till MSCI Sverige index. Jämförelsevis har Sverige som land presterat bättre än samtliga regioner och har dessutom en hög signifikansnivå. Detta kan bero på att Sverige, ett land som kan anses ha kommit långt med moralisk påverkan, i hög grad excluderar oetiska bolag från investeringsstrategier och får därför en starkare försommelseeffekt vilket leder till en så hög avkastning hos sin stocks. Denna höga avkastning kan också bero på att Sverige haft ett relativt litet urval på 18 bolag och är väldigt viktigt mot betting och vapenindustrin. Båda dessa industrier har presterat bra givet den valda tidsperioden för studien, och kan således ha bidragit till högre avkastning än vad som annars kan anses som rimligt. Om en bransch i sig utvecklas gynnsamt genom yttre konflikter eller regleringar är det klart att det skulle påverka resultaten för den granskade perioden. Detta kan vara bra att ha i beaktning när sindex för enskilda länder granskas, då antalet verksamma bolag som ingår i sindexen minskar, vilket kan bidra till fluktuationer i datan som annars inte uppstår i större urval.

Om det är den ena, andra eller båda av dessa faktorer som har spelat in i Sveriges sindex kan vi bara spekulera om, men det är viktigt att komma ihåg att ett litet antal aktier kan ha genererat exceptionella avkastningar under en viss tid och höjer då snittet för hela periodens sindex. Man bör därför vara försiktig om investerare om man väljer att investera i svenska sin stocks till följd av dess historiskt höga avkastning. Försiktigheten grundar sig främst i att historisk avkastning inte är en garanti för framtida avkastning, men även att des urvals prestationer kan ha varit bättre än normalt under den undersökta tidsperioden. Till svenska investorare hoppas studien att praktiskt bidragit till att ge en tydligare bild av avkastningen för sin stocks över hela världen och hur den förhåller sig till respektive regions index. Det är nu upp till investeraren att fatta egna investeringsbeslut utifrån sin egna moraliska kompass om denna väljer att excludera sin stocks från dess investeringsstrategi eller inte. Studien vill ännu en gång för att upprätthålla etiken bakom studien, inte rekommendera någon att investera i oetisk verksamhet, detta då det finns många dåliga sidor av branscherna som studien starkt tar avstånd ifrån.

I denna studie måste man skilja på studiens etik och etiken bakom de bolag som tas upp i studien. Dock anser vi att studien har ett etiskt förhållningssätt då den inte har för avsikt att förändra investerares investeringsbetende utan endast tillhandahålla information om fenomen som förekommer på den ekonomiska marknaden. Författarna är medvetna om att aktierna som studien granskat är oetiska och i studien skrivs det uttryckligen att man inte bör investera i dessa bolag oavsett dess avkastning. Ur ett samhälleligt perspektiv finns det andra vägar att gå än att investera oetiskt för att få en bra avkastning. Som investerare bör man istället undersöka strategier som passar ens egen riskaptit och med en bättre moralisk inriktning än sin stocks. Vi anser starkt att denna strategi får investerare att bli tryggare med sina investeringar och i förlängningen kanske sova bättre om natten.

8.2 Framtida forskning
Vi ser en möjlighet för ytterligare studier som kan titta närmare på institutioners svarta listor. Dels kan fler institutioners svarta listor inkluderas, från olika delar i världen, för att
få en bredare bild över de företag som exkluderas. Studier kan även titta på var “smärtgränsen” för institutioner ligger gällande avvägningen mellan aktiers avkastning och moral. Vi kan utifrån våra regressioner spekulera om att eftersom den svarta listan vi sammanställt, möjligen inte signifikant, presterade långt under resten av sindexarna vi sammansatt dels för världen och dels för olika världsdelar. Vi misstänker att institutioner aktivt väljer att svartlista och således exkludera bolag som dels sysslar med oetisk verksamhet men även att de inte presterar speciellt bra.

Vi tror i förlängningen att institutioner aktivt väljer att “se åt andra hållet” om oetiska bolag är högpresterande. Det hade varit intressant att undersöka om det finns något signifikant stöd för denna teori genom att bland annat ha ett större urval, kanske längre tidsperiod etc. Man bör, förutsatt att teorin skulle stämma, försöka hitta hur pass mycket en sin stock måste överavkasta för att hålla sig ifrån att bli svartlistad av institutioner. Vi tror att det finns ett incitament för institutionerna att otvivelaktigt välja att svartlista och således exkludera bolag som dels sysslar med oetisk verksamhet men även att de inte presterar speciellt bra som aktie. Det har varit intressant att undersöka denna landskap ebfförsöknings avvägning mellan aktiers avkastning och moral. Vi kan utifrån våra regressioner spekulera om att eftersom den svarta listan vi sammanställt, om än inte signifikant, presterade långt under resten av sindexarna vi sammansatt dels för världen och de olika världsdelarna. Vi misstänker att institutioner aktivt väljer att svartlista och således exkludera bolag som dels syns med oetisk verksamhet men även att de inte presterar speciellt bra.

Vi tror i förlängningen att institutioner aktivt väljer att “se åt andra hållet” om oetiska bolag är högpresterande. Det hade varit intressant att undersöka om det finns något signifikant stöd för denna teori genom att bland annat ha ett större urval, kanske längre tidsperiod etc. Man bör, förutsatt att teorin skulle stämma, försöka hitta hur pass mycket en sin stock måste överavkasta för att hålla sig ifrån att bli svartlistad av institutioner. Vi tror att det finns ett incitament för institutionerna att utöva denna strategi då avvägningen i vissa fall är betyder mer än att hålla sig etiskt investerat fullt ut. Det kan vara ett bra tillfälle att “grönmåla” sin verksamhet genom att svartlista sin stocks som institutionen ändå inte har för avsikt att placera i. På så sätt väljer de faktiskt inte bort att investera i dessa, utan de anger bara att de avhåller sig från att investera för att få en medial bild som en framstående etiskt korrekt institution för investeringar.

En annan ytterligare framtida forskningsmöjlighet kan vara att inkludera fler branscher. Inledningsvis i denna studie redogörs för vilka branscher som inkluderas, vilka som exkluderas och varför. En ny infallsvinkel skulle kunna vara att inkludera bolag som är aktiva inom kärnkraft och även kolindustrin. Den här studien har aktivt valt att bortse från bolag inom tvivelaktigt energiförsörjning, då den inte definierats som oetisk av författarna. Om en framtida studie skulle göras, skulle den kunna utformas utifrån att även denna typ av energiförsörjning ska klassas som oetisk och således ingå i urvalet. Denna förändring och utökning av urvalet skulle hypotetiskt kunna få studiens resultat att presteras annorlunda. Ytterligare faktorer kan att ta i beaktning är brott mot mänskliga rättigheter och djurförsök. Dessa valdes primärt att exkluderas från denna studie då dessa faktorer är svår att hitta skriftligen för företag, och således bestämma vilka som ska ingå i urvalet. Om en framtida studie lyckas hitta en lista med bolag som bevisat utövare denna typ handlingar i sin verksamhet, kan dessa således också ingå i ett framtida urval för sin stocks och testas för överavkastning. Författarna varnar dock för att utföra studier där mycket manuellt arbete med datan krävs, då detta dels är tidskrävande samt att risken för mänskliga fel i datan ökar.

57
9. Sanningskriterier

När en kvantitativ studie genomförs är det viktigt att författarna bibehåller en objektivitet och förhåller sig rent vetenskapligt till det problem som studien undersöker. Författarna av denna studie kommer observera om sin stocks överavkastar eller inte i förhållande till index för respektive region och studien ämnar att statistisk kunna förkasta eller acceptera den nollhypotes som är uppsatt av studien. Med detta sagt ska inte författarnas värderingar eller åsikter ha någon möjlighet att påverka resultatet.

9.1 Validitet

Validitet behandlar integriteten av slutsatserna som kan dras från en studie (Bryman & Bell, 2011, s. 42). Vidare menar författarna att det finns olika typer av validitet och dessa kallas för mätningsvaliditet, intern validitet, extern validitet och ekologisk validitet (Bryman & Bell, 2011, s. 42). Mätningsvaliditet används främst inom kvantitativ forskning och kan även kallas för konstruktiv validitet (Bryman & Bell, 2011, s. 42). I huvudsak handlar mätningsvaliditet om frågan om huruvida en mätning som utformats av ett begrepp verkligen återspeglar det begrepp som det är tänkt att undersöka. I denna studie kan det ses som om mätningen av den historiska avkastningen verkligen är den korrekt data för att undersöka överavkastningen. Frågan blir då om de undersökande åtgärderna verkligen representerar det problem som de ska undersöka. Om de inte gör det, kommer studiens resultat att kunna ifrågasättas (Bryman & Bell, 2011, s. 42).

Vidare menar Bryman & Bell (2011, s.42) att det går att dra paralleller mellan mätningsvaliditeten och reliabiliteten genom att om en mätning av ett koncept är instabil och slumpmässig kan det anses som opålitligt. Bedömningen om mätningens giltighet förutsätter således att en mätning av data är tillförlitlig. Detta har genomförts i studien genom att historiska data inhämtats från pålitliga externa databaser för att sedan sammanställas och genomförts statistiska tester på. De data som inhämtats av historisk avkastning är den korrekt för att jämföra historisk avkastning för index mot historisk överavkastning av sindex.

SMB. Således är frågan om hur studien kan vara säker på att de oberoende variablerna är ansvariga för variationen som identifierats hos den beroende variabeln besvarad.

Extern validitet behandlar frågan om resultaten för en studie kan generaliseras och använda utanför den specifika studien (Bryman & Bell, 2011, s. 43). Vidare menar Bryman & Bell (2011, s. 43) att denna typ av validitet är en av huvudorsakerna till att kvantitativa studier är angelägna om att generera representativa prover vad gällande storlek och en väldokumenterad insamlingsprocess. För denna studie har det noga redogjorts för hur datan har insamlats och hur den har använts. Således kan en annan framtida studie använda samma tillvägagångssätt men inhämta data för en specifik region och/eller en annan tidsperiod för att undersöka samma fenomen. Därigenom kan både resultatet och tillvägagångssättet generaliseras utanför denna studie och användas inom andra liknande studier. Resultatet gällande en signifikant överavkastning eller inte kommer givetvis bero på den valda regionens sin stocks samt den valda tidsperioden för en sådan studie.

9.2 Reliabilitet

9.3. Generaliserbarhet
En fråga som ställs vid kvantitativ forskning är om resultatet av studien kan generaliseras från urvalet, dvs. vara applicerbar på en hel population (Bryman & Bell, 2011, s. 164). Denna studie har haft ett världsurval och således ett väldigt stort urval. Därmed anser denna studie att resultaten kan generaliseras även utanför studien på länder som inte ingick i urvalet på 51 länder. Dock ska man ha i åtanke att skillnaden i riskjusterad avkastning skiljer sig över hela världen och det går således inte att generalisera en viss riskjusterad avkastning oavsett region eller land vad gällande sin stocks. Det som däremot
kan generaliseras är att fenomenet förekommer och att försummelseeffekten på bolag har en positiv inverkan på dess riskjusterade avkastning.
10. Källförteckning

Appendix 1 - Regressioner

Afrika CAPM
.regr afrikaer afrikamr, robust

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----------|--------|-----------|--------|-------|---------------------|
| afrikaer | | | | | |
| afrikamr | .5157255 | .059245 | 8.70 | 0.000 | .3990403-.6324107 |
| _cons | .0050304 | .0031457 | 1.60 | 0.111 | -.0011652-.011226 |

Amerika CAPM
Robust CAPM Amerika
.regr amerikaer amerikamr, robust

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----------|--------|-----------|--------|-------|---------------------|
| amerikaer | | | | | |
| amerikamr | .7990423 | .0614523 | 13.00 | 0.000 | .6780099-.9200748 |
| _cons | .0035182 | .0022512 | 1.56 | 0.119 | -.0009156-.007952 |

Asien CAPM
Robust CAPM Asien
.regr asiener asienmr, robust

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----------|--------|-----------|--------|-------|---------------------|
| asiener | | | | | |
| asienmr | .3839782 | .0492283 | 7.80 | 0.000 | .2870213-.4809352 |
| _cons | .0060114 | .0026114 | 2.30 | 0.022 | .0008662-.0111546 |
Europa CAPM
Robust CAPM Europa
.
```
. regr europaeur europamr, robust
```

Linear regression

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|-------|-----------|-------|------|----------------------|
| europaeur | .6886 | .0504 | 13.66 | 0.000| 0.5893213 to 0.7879094 |
| _cons | .0051 | .0019 | 2.74 | 0.007| 0.0014417 to 0.0088089 |

Europa Fama French three factor model

Robust Fama French Europa
.
```
. regr europaeur europamr hmleuropa smbeuropa, robust
```

Linear regression

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|-------|-----------|-------|------|----------------------|
| europaeur | .6897 | .0503 | 13.68 | 0.000| 0.5904296 to 0.7889583 |
| hmleuropa | .1578 | .0821 | 1.92 | 0.056| -.0040097 to 0.3197495 |
| smbeuropa| .0902 | .0847 | 1.07 | 0.288| -.0765629 to 0.257087 |
| _cons | .0044 | .0018 | 2.47 | 0.014| 0.000883 to 0.0078379 |

Oceanien CAPM

Robust CAPM Oceanien
.
```
. regr oceanienmr oceanienmr, robust
```

Linear regression

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|-------|-----------|-------|------|----------------------|
| oceanienmr | .3611 | .0575 | 14.97 | 0.000| .7478947 to .9744316 |
| _cons | .0026 | .0026 | 1.00 | 0.317| .0025345 to .0077966 |

66
Svarta listan CAPM
Robust CAPM Svarta listan
. regr svartalistan VärldenMR, robust

Linear regression
Number of obs = 251
F(1, 249) = 26.6.19
Prob > F = 0.0000
R-squared = 0.5649
Root MSE = 0.3598

| | Coef. | Std. Err. | t | P>|t| [95% Conf. Interval] |
|------------------|--------|-----------|-------|------------------------|
| VärldenMR | 1.026158 | .0628958 | 16.32 | 0.000 | .9022828 1.150034 |
| _cons | 0.0021444 | .0022899 | 0.94 | 0.350 | -.0023655 .0066942 |

Svarta listan Fama French three factor model
Robust Fama French Svartalistan
. regr svartalistan VärldenMR HMLVärlden SMBVärlden, robust

Linear regression
Number of obs = 251
F(3, 247) = 97.30
Prob > F = 0.0000
R-squared = 0.5775
Root MSE = 0.3561

| | Coef. | Std. Err. | t | P>|t| [95% Conf. Interval] |
|------------------|--------|-----------|-------|------------------------|
| VärldenMR | 1.01454 | .0652501 | 15.55 | 0.000 | .8860229 1.143058 |
| HMLVärlden | .1806842 | .1341469 | 1.35 | 0.179 | -.0835336 .4449019 |
| SMBVärlden | -.038146 | .1215978 | -0.31 | 0.754 | -.2776469 .2013549 |
| _cons | 0.0016529 | .0022232 | 0.74 | 0.458 | -.0027259 .0060316 |

Sverige CAPM
Robust CAPM Sverige
. regr sverigeer sverigemr, robust

Linear regression
Number of obs = 251
F(1, 249) = 14.72
Prob > F = 0.0002
R-squared = 0.0821
Root MSE = 0.0421

| | Coef. | Std. Err. | t | P>|t| [95% Conf. Interval] |
|------------------|--------|-----------|-------|------------------------|
| sverigeer | .2004446 | .0522394 | 3.84 | 0.000 | .0975571 .3033321 |
| _cons | 0.0096237 | .0027397 | 3.51 | 0.001 | .0042278 .0150196 |
Sverige Fama French three factor model

Robust Fama French Sverige

```
. regr sverigeer sverigemr hmlsweden smbsweden, robust
```

| | Robust | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----------------|----------------|--------|-----------|-------|-------|---------------------|
| sverigeer | | 0.2063127 | 0.0532993 | 3.87 | 0.000 | 0.1013336 - 0.3112918 |
| hmlsweden | | 0.0949884 | 0.0535493 | 1.77 | 0.077 | -0.0104831 - 0.2004598 |
| smbsweden | | 0.0810164 | 0.064397 | 1.26 | 0.210 | -0.0458209 - 0.2078537 |
| _cons | | 0.0093520 | 0.0026988 | 3.47 | 0.001 | 0.0040373 - 0.0146604 |

USA CAPM

Robust CAPM USA

```
. regr usamer usamr, robust
```

| | Robust | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----------------|----------------|--------|-----------|-------|-------|---------------------|
| usamer | | 0.8011921 | 0.0640035 | 12.52 | 0.000 | 0.675135 - 0.9272493 |
| _cons | | 0.0037461 | 0.0023596 | 1.59 | 0.114 | -0.0009012 - 0.0083933 |

USA Fama Fama French three factor model

Newey Fama French USA

```
. newey usamer3 usamr4 hmlusa smbusa, lag(4)
```

Regression with Newey-West standard errors

```
Number of obs    =        251
F(  3,   247)    =       83.02
Prob > F         =    0.0000
```

| | Newey-West | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----------------|------------------|--------|-----------|-------|-------|---------------------|
| usamer3 | | 0.779459 | 0.0777288 | 10.03 | 0.000 | 0.6263632 - 0.9325549 |
| usamr4 | | 0.1235499 | 0.1077492 | 1.15 | 0.253 | -0.0886746 - 0.3357744 |
| hmlusa | | -0.0090588 | 0.0807733 | -0.11 | 0.911 | -0.1681811 - 0.1500335 |
| smbusa | | 0.0037781 | 0.0027207 | 1.39 | 0.166 | -0.0015807 - 0.0061369 |
Världen CAPM

```
. regr världenER världenMR, robust
```

| VärldenMR | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----------|-------|-----------|-----|-----|----------------------|
| 0.7650803 | 0.0517253 | 14.79 | 0.000 | 0.6632053 | 0.8669552 |
| _cons | 0.0040464 | 0.0016798 | 2.41 | 0.017 | 0.000738 | 0.0073548 |

Världen Fama French three factor model

```
. newey världenER världenMR hmlglobal smbglobal, lag(4)
```

Regression with Newey-West standard errors

| VärldenMR | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----------|-------|-----------|-----|-----|----------------------|
| 0.7415405 | 0.0574301 | 12.90 | 0.000 | 0.6283071 | 0.8547738 |
| hmlglobal | 0.1431625 | 0.0913783 | 1.57 | 0.118 | -0.0361674 | 0.322457 |
| smbglobal | 0.0345237 | 0.0769707 | 0.45 | 0.654 | -0.1170089 | 0.1861983 |
| _cons | 0.0036626 | 0.0019744 | 1.66 | 0.095 | -0.0002261 | 0.0075514 |

Afrika robusthetstest

```
. newey robafika världenMR hmlglobal smbglobal, lag(4)
```

Regression with Newey-West standard errors

| VärldenMR | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----------|-------|-----------|-----|-----|----------------------|
| 0.7419181 | 0.0575972 | 12.88 | 0.000 | 0.6284737 | 0.8553624 |
| hmlglobal | 0.1442383 | 0.0918604 | 1.57 | 0.118 | -0.0366914 | 0.325168 |
| smbglobal | 0.0334205 | 0.0774519 | 0.43 | 0.666 | -0.1191298 | 0.1859709 |
| _cons | 0.0036614 | 0.0019803 | 1.85 | 0.066 | -0.0002391 | 0.0075618 |
Amerika robusthetstest

Robust utan amerika

`. regr robame excessreturnworld HMLVärlden SMBVärlden, robust`

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---------------------------|--------|-----------|-------|------|----------------------|
| excessreturnworld | 0.6509172 | 0.0568909 | 11.44 | 0.000 | 0.5388639 - 0.7629704 |
| HMLVärlden | 0.0528524 | 0.08169 | 0.65 | 0.518 | -0.1080454 - 0.2137502 |
| SMBVärlden | 0.1104992 | 0.0727743 | 1.52 | 0.130 | -0.0328382 - 0.2538365 |
| _cons | 0.0045724 | 0.001717 | 2.66 | 0.008 | 0.0011906 - 0.0079542 |

Asien robusthetstest

Newey-West Robust Asien

`. newey robasien VärldenMR hmlglobal smbglobal, lag(4)`

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---------------------------|--------|-----------|-------|------|----------------------|
| VärldenMR | 0.7805093 | 0.0609171 | 12.81 | 0.000 | 0.660526 - 0.9004925 |
| hmlglobal | 0.1586886 | 0.1049187 | 1.51 | 0.132 | -0.0479608 - 0.365338 |
| smbglobal | -0.0205375 | 0.0344436 | -0.57 | 0.571 | -0.0169438 - 0.0041267 |
| _cons | 0.0034567 | 0.0021160 | 1.63 | 0.104 | -0.0007126 - 0.007626 |

Europa robusthetstest

Newey-West Robust Europa

`. newey robeurope VärldenMR hmlglobal smbglobal, lag(4)`

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---------------------------|--------|-----------|-------|------|----------------------|
| VärldenMR | 0.7733593 | 0.0592122 | 13.06 | 0.000 | 0.656734 - 0.8899845 |
| hmlglobal | 0.1838739 | 0.0991955 | 1.87 | 0.062 | -0.0095333 - 0.3772812 |
| smbglobal | 0.0343642 | 0.0829092 | 0.42 | 0.674 | -0.1284349 - 0.1961634 |
| _cons | 0.0033524 | 0.0021765 | 1.54 | 0.125 | -0.0009345 - 0.0076394 |
Oceanien robusthetstest
Newey-West Robust Oceanien

```
. newey roboceanien VärldenMR hmlglobal smbglobal, lag(4)
```

| roboceanien | Coef. | Std. Err. | t | P>|t| | 95% Conf. Interval |
|-------------|--------|-----------|-------|------|------------------|
| VärldenMR | .7395782 | .0576233 | 12.83 | 0.000 | .6268025 - .8530739 |
| hmlglobal | .1448952 | .0919018 | 1.58 | 0.116 | -.036116 - .3259064 |
| smbglobal | .036288 | .0775279 | 0.47 | 0.640 | -.1164122 - .1899882 |
| _cons | .0036618 | .0019813 | 1.85 | 0.066 | -.0002406 - .0075641 |

Alkohol robusthetstest
Newey-West Robust Alkohol

```
. newey roboalkohol VärldenMR hmlglobal smbglobal, lag(4)
```

| roboalkohol | Coef. | Std. Err. | t | P>|t| | 95% Conf. Interval |
|-------------|--------|-----------|-------|------|------------------|
| VärldenMR | .8055676 | .0567238 | 14.20 | 0.000 | .6935436 - .9172316 |
| hmlglobal | .1716533 | .1037398 | 1.65 | 0.099 | -.0326643 - .375971 |
| smbglobal | .0230435 | .0846366 | 0.27 | 0.786 | -.1436797 - .1897449 |
| _cons | .0031946 | .0021294 | 1.50 | 0.135 | -.0009995 - .0073887 |

Betting robusthetstest
Newey-West Robust Betting

```
. newey robbetting VärldenMR hmlglobal smbglobal, lag(4)
```

| robbetting | Coef. | Std. Err. | t | P>|t| | 95% Conf. Interval |
|-------------|--------|-----------|-------|------|------------------|
| VärldenMR | .7060081 | .0557971 | 12.65 | 0.000 | .5961094 - .8159068 |
| hmlglobal | .1666865 | .0938862 | 1.78 | 0.077 | -.0180157 - .3517527 |
| smbglobal | .0545157 | .0783006 | 0.69 | 0.489 | -.0999083 - .2085377 |
| _cons | .0038527 | .0019963 | 1.93 | 0.055 | -.0000793 - .0077846 |
Vapen robusthetstest
Newey-West Robust Vapen

```
. newey robvapen VärldenMR hmlglobal smbglobal, lag(4)
```

Regression with Newey-West standard errors
Number of obs = 251
maximum lag: 4

```
F( 3, 247) = 33.36
Prob > F = 0.0000
```

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|-------|-----------|-------|------|----------------------|
| robvapen | 0.5945954 | 0.0737136 | 8.07 | 0.000 | 0.449408 | 0.7397828 |
| VärldenMR | 0.1586694 | 0.1072431 | 1.48 | 0.140 | -0.0525641 | 0.369991 |
| hmlglobal | 0.0118368 | 0.0975059 | 0.12 | 0.003 | -0.1802123 | 0.2038859 |
| smbglobal | 0.0047524 | 0.0023807 | 2.00 | 0.047 | 0.0000632 | 0.0094115 |

Tobak robusthetstest

```
. regr robtob excessreturworld HMLVärlden SMBVärlden, robust
```

Linear regression
Number of obs = 251

```
F(3, 247) = 99.97
Prob > F = 0.0000
R-squared = 0.6449
Root MSE = 0.02599
```

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|-------|-----------|-------|------|----------------------|
| robtob | 0.8517953 | 0.0541426 | 15.73 | 0.000 | 0.7451554 | 0.9584353 |
| excessreturnworld | 0.0701767 | 0.088644 | 0.79 | 0.429 | -0.1044178 | 0.2447711 |
| HMLVärlden | 0.0386701 | 0.0793693 | 0.49 | 0.627 | -0.1176569 | 0.1949971 |
| SMBVärlden | 0.0030081 | 0.0016442 | 1.83 | 0.069 | -0.0002304 | 0.0062466 |
| _cons | 0.0000000 | 0.0000000 | 0.00 | 0.999 | 0.0000000 | 0.0000000 |