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Abstract 

Identification and prediction of cancer subtypes are important parts in the 

development towards personalized medicine. By tailoring treatments, it is 

possible to decrease unnecessary suffering and reduce costs. Since the 

introduction of next generation sequencing techniques, the amount of data 

available for medical research has increased rapidly. The high dimensional omics 

data produced by various techniques requires statistical methods to transform 

data into information and knowledge.  

All papers in this thesis are related to distinguishing of disease subtypes in 

patients with cancer using omics data. The high dimension and the complexity of 

sequencing data from tumor samples makes it necessary to pre—process the data.  

We carry out comparisons of feature selection methods and clustering methods 

used for identification of cancer subtypes. In addition, we evaluate the effect that 

certain characteristics of the data have on the ability to identify cancer subtypes. 

The results show that no method outperforms the others in all cases and the 

relative ranking of methods is very dependent on the data. We also show that the 

benefit of receiving a more homogeneous data by analyzing genders separately 

can outweigh the possible drawbacks caused by smaller sample sizes. One of the 

major challenges when dealing with omics data from tumor samples is that the 

patients are generally a very heterogeneous group. Factors that lead to 

heterogeneity include age, gender, ethnicity and stage of disease. How big the 

effect size is for each of these factors might affect the ability to identify the 

subgroups of interest.  

In omics data, the feature space is often large and how many of the features that 

are informative for the factors of interest will also affect the complexity of the 

problem. We present a novel clustering approach that can identify different 

clusters in different subsets of the feature space, which is applied on methylation 

data to create new potential biomarkers. It is shown that by combining clinical 

data with methylation data for patients with clear cell renal carcinoma, it is 

possible to improve the currently used prediction model for disease progression.   

Using unsupervised clustering techniques, we identify three molecular subtypes 

of prostate cancer bone metastases based on gene expression profiles. The 

robustness of the identified subtypes is confirmed by applying several clustering 

algorithms with very similar results.  
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Sammanfattning  

Identifiering och prediktion av cancer undergrupper är viktiga delar i 

utvecklingen mot personalized medicin. Genom att skräddarsy behandling är det 

möjligt att reducera både onödigt lidande och kostnader. Sedan introduktionen 

av next generation sequencing tekniken så har mängden data som kan användas 

för medicinsk forskning ökat snabbt. Det högdimensionella data som produceras 

av olika tekniker kräver statistiska metoder för att omvandlas till information och 

kunskap.  

Alla artiklar i den här avhandlingen är relaterade till särskiljning av 

sjukdomsundergrupper hos patienter med cancer genom användning av 

omikdata. Den höga dimensionen och komplexiteten hos sekvensieringsdata från 

tumörprover gör det nödvändigt att bearbeta data innan analys. Vi jämför olika 

variabelselektion- och klustermetoder som används för att identifiera 

cancerundergrupper. Vi utvärderar även effekten vissa utmärkande drag hos data 

har på förmågan att identifiera cancerundergrupper. Resultatet visar att ingen 

metod utklassar de övriga metoderna i alla fallen och att den relativa rankingen 

av metoderna var väldigt beroende av data. Det visades också att det kunde vara 

fördelaktigt att analysera könen var för sig, eftersom fördelen med ett mer 

homogent data kan uppväga nackdelen med en mindre stickprovsstorlek. En av 

de stora utmaningarna med omikdata från tumörprover är att patientgruppen 

oftast är väldigt heterogen. Patienterna skiljer sig i allt från ålder och kön, till 

etnicitet och sjukdomsstadie. Hur stor effektstorleken är för dessa faktorer kan 

påverka förmågan att identifiera undergrupperna av intresse. 

I omikdata är antalet variabler ofta stort, och hur många av dessa som innehåller 

information kopplat till faktorerna av intresse, påverkar också komplexiteten av 

problemet. Vi presenterar en ny klustermetod som kan identifiera olika kluster 

bland olika delar av variablerna och denna används på metyleringsdata för att 

skapa nya potentiella biomarkörer. Vi visar att det är möjligt att förbättra 

prediktionsmodellen för sjukdomsprogression hos patienter med 

njurcellscarinom genom att kombinera kliniskt data med metyleringsdata.  

Vi identifierar tre undergrupper av benmetastaser från prostatacancer baserat på 

genuttrycksprofiler genom att använda oövervakade klustringstekniker. Vi visar 

att grupperna är robusta genom att applicera flera olika klustringstekniker som 

alla gav liknande resultat.  
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1. Introduction  

Disease – a condition deviating from the normal, with a negative effect on 

function or structure of an organism. Diseases of different kinds have plagued the 

inhabitants of the earth since the beginning of time. Archeological discoveries of 

prehistoric people show signs of disease in form of gross external features, and 

documentation of disease can be found as far back as in the 17th century BC. It 

was not until about the fourth century BC that scientists, influenced by the Greek 

physician Hippocrates, started to believe that disease was not a punishment from 

the Gods, but rather caused by earthly influences. Since then, researchers all over 

the world have made lasting contributions to the field of pathology [1].  

The causes of disease are many. Pathogenic microbial agents such as viruses and 

bacteria can cause a variety of infectious diseases [2]. Diseases can also be caused 

by epigenetic changes or genetic defects and may or may not be hereditary [3,4]. 

One example of such a disease is cancer, which is the second leading cause of 

death worldwide [5]. The suffering and costs connected to cancer related diseases 

are huge, which makes cancer research a high priority target. Cancer is actually a 

general term for a group of diseases that involves cells that grow and divide in an 

uncontrolled manner.  The connection to genetic damage was made over 100 

years ago by Theodore Boveri who published a paper suggesting that cancer 

tumors originate from a single cell with chromosomal damage and that 

inheritance could play a role in the risk of cancer development [6]. It would 

however take until 2003 before the Human Genome Project completed the task 

of determining the sequence of nucleotide base pairs that constitutes the human 

DNA [7]. It took additional three years before the first report of cancer genome 

sequencing appeared [8]. The first methods used for sequencing were both slow 

and costly. The introduction of next generation sequencing, which enabled 

researchers to sequence data at much higher speed and at lower costs than before, 

opened a new era in genomic and medical research. Researchers were provided 

with opportunities of investigating the role played by genomic variants in health 

and disease of humans. As the amount of data generated by sequencing methods 

continue to increase exponentially, the technical and ethical challenges arise with 

it. The huge amount of data also sets higher demands on researchers to transform 

data into information and knowledge, which requires development of advanced 

statistical methods to handle the high dimension and complexity of the data. 

When studying diseases using genetic or epigenetic data, the process typically 

involves at least three steps. A pre-processing procedure with the aim to remove 

technical noise is usually the first step. After that, a feature selection step is often 

necessary to remove redundant and uninformative features and therefore reduce 

the dimension. Thereafter statistical methods can be used to test hypotheses, 
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discover novel subtypes and predict diagnosis etc. Each of these steps requires 

the researcher to make choices of which method to use. It is crucial to evaluate 

the effect of these choices and to investigate how different characteristics of the 

data influence the performance of the methods. 

Finding relevant underlying subgroups in high-dimensional genetic and 

epigenetic data where the patients often have diverse backgrounds and the 

features are affected by many factors of which only a few are known, is an arduous 

task. Detection of novel disease subtypes requires unsupervised methods and 

different clustering algorithms have been frequently used for this purpose [9,10].  

Classification methods can be used for assessing risk of disease progression or 

survival time for patients, but this requires training data where the outcome is 

known. The classification result can then be used to determine e.g. follow-up or 

treatment strategies.  

In this thesis, gene expression data from cancer patients are used to evaluate 

feature selection/extraction methods as well as clustering methods where the aim 

is to identify cancer subtypes. Properties of the data, such as imbalance of 

underlying subgroups and the total number of observations are studied to 

determine which impact they have on ability to identify new subgroups. A novel 

clustering method that can identify clusters in different parts of the feature space 

is proposed. The approach is applied to methylation data from patients with 

kidney cancer to create potential biomarkers.  Several clustering techniques are 

applied to gene expression data from bone metastases from patients with prostate 

cancer to detect novel subtypes. In addition, we test if it is possible to improve the 

currently used risk-classifier for disease progression in patients with clear cell 

renal cell carcinoma, by combining clinical data with methylation data.  
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2. Omics data 

Deoxyribonucleic acid or DNA consists of four nucleobases (T, C, G and A) and 

carries the genetic instructions in all known organisms. The double strained helix 

shaped structure was described in a scientific paper 1953 written by James 

Watson and Francis Crick for which they later received the Nobel Prize together 

with Maurice Wilkins [11]. The process of determining the order of the 

nucleobases is called DNA sequencing. Since the first DNA sequences were 

obtained in the 1970s, the methods have developed in a rapid speed. The next 

generation DNA sequencing (NGS) is the name of a collection of sequencing 

methods, including Illumina and Roche 454 sequencing, that allows us to 

sequence DNA and RNA at a much higher speed and considerably lower price 

than before. NGS can be used to sequence whole genomes or specific areas. The 

knowledge obtained by DNA sequences has played a major role in several areas, 

including medical diagnosis of diseases.  

A DNA molecule is divided into functional units called genes. The information in 

the genes becomes useful when it is transcribed into RNA and later translated to 

a protein. This flow of information is called the central dogma of molecular 

biology [12], see Figure 1.   

 

Figure 1. The central dogma of molecular biology. 
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Proteins play a critical role in the body and do most of the work in the cells. They 

are required for structure, function and the regulation of the different tissues and 

organs in our body. Gene regulation or regulation of gene expression is the 

process used by cells to control the production of certain gene products (proteins 

or RNA).  

2.1. Methylation 

Aside from the genetic code that is stored in the DNA, there are other mechanisms 

involved in the regulation of gene products. Epigenetics is the study of heritable 

changes in phenotype that does not involve changes in the genetic code. One 

example of an epigenetic mechanism is the folding of the DNA. The DNA is tightly 

folded into units called chromosomes. How tight the DNA is folded affects the 

transcription to RNA and therefore also the gene expression [13]. Another well 

studied mechanism is DNA methylation, which is the process where a methyl 

group is added to the DNA molecule. A methyl group consists of four atoms, three 

hydrogen atoms that are bonded to one carbon atom. Both cytosine (C) and 

adenine (A) can be methylated, but in mammals, methyl groups are almost 

exclusively added to cytosines (C) at CpG sites, see Figure 2. A CpG site is a section 

of the DNA, where a cytosine (C) nucleobase is followed by a guanine (G) 

nucleobase. In human DNA, about 80% of the CpG sites are methylated [14].  

 

Figure 2. DNA methylation is a mechanism occurring when a methyl group (𝐶𝐻3) is added to the 

DNA molecule. The majority of DNA methylation occurs on cytosine (C). 

Differences in methylation pattern have been connected to several diseases, 

including obesity, Rett syndrome and cancer [15]. In paper IV, we use the degree 

of methylation measured at 450 000 sites in the DNA to build new variables for 

prediction of risk for cancer progression in patients with clear cell renal cell 

carcinoma.  

2.2.  Gene expression 

Measuring of gene expression is an important part of pathology and the data can 

be used for various purposes. A common aim is to identify genes that are 
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differentially expressed between two treatment groups or between disease 

subtypes. Those genes can in turn be used to identify disease subtypes.  

Measuring of gene expression can be done using different techniques, including 

RNA sequencing and microarrays, which are described below.  

Microarrays  

DNA microarrays are slides that contain thousands of tiny spots. Each spot 

contains known single stranded DNA sequences from a specific gene and the 

length of the sequence can vary between different platforms. The spots are 

attached to the surface on the slide on a defined position, corresponding to a gene. 

How the spot is attached to the solid surface also varies between methods. 

Messenger RNA (mRNA) is RNA that codes for proteins. After extracting mRNA 

from the samples, the mRNA is reverse-transcribed into complementary DNA 

(cDNA).  In the hybridization process, cDNA from the samples that have been 

dyed with fluorescent dye are applied on the microarray chip and bind to the DNA 

in the spots. In a two-channel microarray there are two colours, one for the 

sample of interest and another for a control sample, which can be for example a 

normal sample. The chip is then washed to remove any unbound labelled DNA 

strands and placed in a laser scanner that activates the fluorescence dye. The 

intensity of the color is proportional to the amount of cDNA that bounded to the 

probes and is used as a relative measure of gene expression. 

RNA-seq 

Unlike microarray experiments where the DNA sequence must be known in 

advance, RNA-sequencing does not necessarily require any prior sequence 

knowledge. The exact procedure varies between platforms, but the general steps 

are similar. Most instruments use DNA for the sequencing and the RNA is 

therefore converted into a cDNA library. When the RNA sequences are extracted 

from the sample, the molecules of interest are isolated (mRNA in this case). The 

fragments are reverse-transcribed into cDNA and fragmented in shorter pieces. 

The fragmentation can in some cases be performed before the conversion to 

cDNA. Sequencing adaptors are attached to both ends of the cDNA fragments 

before a size selection is performed. The cDNA library is then (often) amplified 

before it is sequenced on a NGS-platform. How long fragments the platforms can 

read varies between the instruments, but commonly around 50-400 bases long. 

The third generation sequencing platforms can handle much longer reads [16]. 

Longer fragments are easier to align to the genome and therefore preferred in the 

downstream analysis. The sequencing step includes addition of nucleotides that 

are coloured in different fluorescent colours, one for each of the four bases. The 

sequences are then determined by reading the colour of each incorporated 
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nucleotide. The reads from the fragments are stored in FASTQ files, which 

besides from the sequence contain a per-base quality measure. The raw reads are 

then aligned to the reference genome to determine where on the genome each 

read belongs. The human reference genome is continually updated as novel 

techniques are developed and new discoveries are made [17]. The number of 

reads that have been aligned to a specific gene is then proportional to the gene 

expression. The read count is affected by several factors which must be taken into 

account in the downstream analysis. The length of the gene affects how many 

reads that are aligned to it, where a longer gene will have more reads. The gene 

length does not matter so much when the same feature is compared in two or 

more samples, but could be an issue if two features are compared within one 

sample. Another factor that affects the read count is the sequencing depth, which 

is the number of sequenced reads for a sample. Different samples can have 

different sequencing depth and appropriate normalization should therefore be 

applied to make gene expression levels comparable between samples.  

There are several conceptual differences between microarray and RNA-seq 

techniques. RNA-seq is better for detecting low expressed genes and the 

background noise is lower, but the technique is more expensive than microarrays. 

Papers I and II are based on RNA sequencing data from human cancer tumors, 

while paper III utilizes microarray data. 
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3. Pre-processing 

Both gene expression data and methylation data require pre-processing before 

performing analyses to remove e.g. batch effects and technical variation, which 

can come from both the library preparation and from the sequencing itself. The 

normalization process aims to remove noise and batch effects and to compensate 

for e.g. difference in library size. One critical point is that the procedures often 

assume that the distribution of gene expression values will be the same for all 

samples, which is not always the case.  

3.1. Normalization 

Which type of normalization to use on RNA-seq data depends on the aim of the 

study. Comparisons within a sample requires normalization that accounts for 

factors like gene length and GC-content, while comparisons between samples 

requires normalization methods that compensate for differences in library size. 

All included studies focus on between-sample comparisons. In paper I and II, we 

used publically available gene expression data. The data sets were generated 

using RNA-sequencing and quantified using the tool RSEM, which applies the 

Expectation-Maximization algorithm [18]. There exist other tools for 

quantification of gene expression from RNA-seq data, e.g. HTSeq and Cufflinks, 

but we focused on data where RSEM was used for estimating expression levels 

[19,20]. In paper I, the raw counts were divided by the 75:th percentile for each 

patient after removing zeroes, followed by multiplication by 1000 and a log-

transform. In paper II, the raw counts were instead normalized and transformed 

using a variance stabilizing transform offered in the R-package Deseq2 [21]. In 

paper III, we combined gene expression data from two different platforms. The 

mean-value for each platform was subtracted to remove batch effects. Before 

centering by the mean, the arrays were quantile normalized.  In paper IV 

methylation data from two different bead types were normalized using the BMIQ 

method, which is a model based intra-array normalization strategy that is 

specifically constructed to correct for probe design bias in Illumina Infinium 450k 

DNA methylation data [22]. 
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4. Feature reduction 

When analyzing data where the feature dimension is considerably larger than the 

number of observations, it is a common procedure to reduce the number 

variables. We reduce the number of features both by filtering non-informative 

features and by transforming features into a lower space. 

4.1. Filtering 

Filtering of low expressed genes is common in analysis of gene expression data. 

It is especially important to filter genes expressed at low levels when the goal is 

to identify differentially expressed genes (DEG). Sha et al. [23] showed that the 

sensitivity for DEG detection increased after filtering up to 20% of low expressed 

genes. In paper I, the genes with expression values below the 15th percentile in 

more than 75% of the sample, were removed prior to the analysis. In paper II, we 

applied a slightly different approach. Genes were given a score based on how 

many of the samples that had expression values lower than the 25th gene 

percentile. Based on the score, 25 % of the lowest expressed genes were filtered 

out. In paper IV we analyzed β-values, which is the estimated level of methylation 

(ranging from 0 to 1), for 450 000 sites. These were filtered down to 

approximately 169 0000 by removing e.g. probes located at the X and Y-

chromosomes and probes with very low signals. To enable use of our method on 

data generated from other platforms, we also excluded probes without 

representation on the Illumina EPIC methylation array.   

4.2. Feature selection and feature extraction 

After initial filtering of non-informative features, it can be necessary to reduce the 

feature space further. This can be done either by transforming the features into a 

space of lower dimension by using methods such as principal component analysis 

and partial least squares regression,  or by ranking  features according to how 

informative they are and selecting only the highest ranked features. The 

procedure can look very different depending on whether the aim is to perform 

supervised classification or unsupervised learning. For supervised problems, the 

known labels or outcomes can be used in order to select informative features, 

whereas clustering problems requires methods based on other characteristics of 

the data. Examples of such characteristics are high variation over samples or the 

presence of two or more “peaks” in the data. A bimodal or multimodal 

distribution suggests underlying groups in the data, see e.g. a density plot of gene 

expression value of one gene in the brain cancer data set used in paper I and II 

(Figure 1). Two distinct peaks in the distribution will make the gene a good 

candidate for disease biomarker. In paper I and II, we evaluate different feature 

reduction techniques used for cluster analysis of RNA-seq data.   
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Figure 3. Density plot of gene expression of one gene in 226 patients with lower grade glioma. Two 

distinct peaks are visible, suggesting the presence of underlying groups among the samples. 
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5. Clustering 

Clustering is an unsupervised learning process, where similar objects are grouped 

together to form clusters. The definition of a cluster is quite loose and different 

clustering algorithms utilize different techniques to search for an optimal 

solution, and since there exists no uniform definition on how to measure 

similarity of a group of objects, the clustering results can differ substantially.  

Some clustering techniques require that the user specify how many clusters the 

data should be divided into, while others give a hierarchy of the objects as output.  

Cluster analysis is commonly used within medical research to identify disease 

subgroups [9,24]. In paper I, we compared different clustering approaches on 

RNA-seq data from tumor samples, where the disease subgroups were known. 

We also studied how the data characteristics and the choice of pre-processing 

method affected how well the clustering techniques were able to identify the 

subtypes.  In paper III, we studied the robustness of the identified subgroups by 

applying several clustering methods.   

Clustering of high-dimensional data is challenging due to several reasons. High 

dimensional data tend to be sparse and causes all observations to appear 

equidistant from each other, meaning that the ratio between the nearest and 

farthest points approaches 1. This is especially true for some distance metrics 

[25]. A high dimensional feature space also causes different clusters to form in 

different subspaces of the data. These effects are commonly referred to as “curse 

of dimensionality”, an expression first used by Richard Bellman [26].  

When the feature space is large, relevant features can become masked behind 

irrelevant features [27]. In paper IV, we developed a novel clustering method 

called Directed Cluster Analysis (DCA) that captures clusters defined in different 

subspaces. The method consists of two steps. First clustering was performed on 

each variable (methylation site) separately, which divides the objects (samples) 

into two groups. So each variable is a 0/1 vector. Next, the variables are divided 

into groups. Variables with similar 0/1 profiles will cluster together, see Figure 4. 

Both clustering steps are made using k-means clustering. The idea behind this 

approach is that variables that are affected by the same factors will give similar 

partitions of the patients. We made consensus variables of the clusters by 

calculating the mean methylation (β-value) for each sample of the all variables 

included in a cluster. However, as an alternative you could calculate a majority 

vote for each cluster, which will label each sample as either 0 or 1. This would 

yield several cluster outputs that could be compared to known partitions from 

factors such as gender to reduce the list of partitions possible related to disease 

subtype. This approach is closely related to the concept of biclustering, which is a 
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data mining technique that identifies a subset of rows with similar patterns across 

a subset of columns [28]. Unlike biclustering techniques, we cluster in two steps 

and require similar pattern across all columns (patients) and not just in a subset. 

Some techniques allow for overlap of the features, whereas our technique allows 

features to be included in only one cluster. 

 

Figure 4. Schematic overview of Directed Cluster Analysis. 
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6. Classification 

Classification is the process of determining which class a new observation belongs 

to by training a model on data with known class belonging. A challenge when 

working with high-dimensional data is that classification methods tend to 

perform poorly when handling data with few observations and huge amount of 

variables, wherefore some kind of feature reduction technique often is required. 

Generally, the classification error tends to decrease in the training data when 

adding more variables to the model, but the model will eventually suffer from 

overfitting. 

In paper I, we used classification as a kind of reference on how strong the genetic 

signal connected to disease subtype was in the datasets. The method we used is 

called random forest, which is a classification algorithm consisting of several 

decision trees. The algorithm uses a version of bagging where a subset of both 

samples and features are used in each split and therefore prevent the trees from 

becoming too correlated [29]. 

In paper IV, we used logistic regression to classify patients into high or low risk 

groups for disease progression. Logistic regression falls within the category of 

linear classifiers and models a binary dependent variable or response by a linear 

combination of the independent variables or predictors, which can be both 

continuous and binary. By fitting data to a logit function, it predicts the 

probability of an event occurring (in our case disease progression within five 

years). The logistic regression model is described by: 

ln (
𝑝

1 − 𝑝
) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘 

where 𝑝 is the probability of an event i.e. 𝑃(𝑌 = 1), 𝑌 is the response variable. 

𝛽0, … , 𝛽𝑘  are the model parameters and 𝑥1, … , 𝑥𝑘  are the predictors. 

The left hand side of the equation gives the log odds of an event, which can be 

converted to get the probability 𝑝: 

𝑝 =
𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘

1 + 𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘
 

The posterior probability (the probability of an event given a set of predictors) is 

then used to classify patients. The standard cutoff is at 0.5. By altering the cutoff, 

we controlled the true positive rate to 85%, which allowed for comparison to the 

Mayo scoring system, which is currently in use in Sweden for prediction of 
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outcome and treatment stratification for patients with clear cell renal cell 

carcinoma.  

In paper III, we first applied cluster analysis to identify subtypes of bone 

metastases in patients with prostate cancer. Using supervised analysis, we then 

identified the top 20 differentially expressed genes, which were included in a 

prediction model. Prediction was made using orthogonal projections to latent 

structures discriminant analysis (OPLS-DA), which is a latent variable method 

that creates new components as linear combinations of the original variables and 

use these as prediction variables [30]. OPLS-DA can model both variation 

connected to subtype information as well as uncorrelated (orthogonal) variation, 

i.e. within class variation. It uses the class information to decompose the data 

matrix and remove variation which is not correlated to cancer subtype.     
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7. Evaluation 

Evaluation of clustering methods is a difficult task, both since the true partitions 

are seldom known in advance and since there exist several ways of determining 

similarity between partitions. In papers I,II and IV, we assumed that the true 

partitions were known. In papers I and II, we evaluated the performance of the 

clustering methods by comparing the clustering result to the known partition 

using adjusted Rand index (ARI). ARI is a modified version of Rand index, that 

adjusts for agreement by chance [31]. The value 1 indicates that the compared 

partitions are identical, and the value 0 indicates that the agreement is as poor as 

expected by chance.  

We consider the known disease subgroups as the gold standard partition. 

However, we know that there exists several other partitions in the data as well. 

One such known partition is the gender of the patients. Different groupings of the 

samples may exist in different feature subspaces. One way to evaluate the 

clustering result would be to define the gold standard as the groups defined by all 

know factors, which then will be several small groups of patients. But this will 

make the comparisons more difficult since a patient misclassified with respect to 

gender will be judged equally as a misclassification w.r.t disease subtype. 

How well a clustering method is able to identify groups defined by a factor of 

interest depends on both the clustering algorithm itself, but maybe even more on 

how many other factors that differentiate the objects, and how strongly the 

variables are affected by the factors.  A low value of for example adjusted Rand 

index does not necessarily imply that the method has low performance, it can 

indicate the presence of a factor with stronger signal than the one defining the 

gold standard partition.  

There is a substantial difference between unsupervised clustering and supervised 

classification. Since supervised classification trains the model to differentiate on 

the factor of interest, it is not as sensitive to the presence of irrelevant features as 

clustering techniques are. In paper I, we used supervised classification as a 

positive control when evaluating clustering techniques.  

In paper IV, we evaluated the classification performance by comparing the 

sensitivity and specificity between different models. The sensitivity is the true 

positive rate, which in this case means the proportion of patients with disease 

progression within five years that were classified as high risk.  The specificity is 

the true negative rate, which corresponds to the proportion of patients without 

disease progression within five years that were classified as low risk. One could 

choose to look only at the percentage of correctly classified patients, which would 
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make it easier to compare models with each other. That could however be 

misleading in the case of very skew subgroups, since the models can classify all 

patients to belong to one group and that would yield quite high performance. If 

the consequences of misclassifying patients in one of the groups are more severe 

than misclassifying patients in the other group, it is beneficial to use sensitivity 

and specificity rather than only percentage of correctly classified patients. It does 

however make it more complicated to compare different models. In our case, we 

chose the cutoff for the posterior probability to fixate the sensitivity. In that way, 

we could compare the models using only the specificity.   

In paper III, the classification model was validated on external data for which the 

disease subgroups were unknown. Since the subgroups were unknown, the 

validation did not give a measure of performance, but the relative distribution of 

the predicted subtypes could be compared to that obtained in our data.  
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8. Results  

In paper I, we showed that choice of clustering algorithm had an effect on the 

ability to identify cancer subtypes using RNA-seq data, but no method completely 

outperformed the others in all data sets. The relative distribution of the cancer 

subtypes affected the clustering performance, where very skewed distributions 

often gave lower accuracy. A limited negative effect was observed for reduction of 

the sample size. The presence of other partitions in the data can lower the ability 

of finding partitions related to disease subtypes. By analyzing the genders 

separately, we observed that the gain of analyzing a more homogeneous data 

could outweigh the negative effect of a smaller sample size.   

The results of comparisons between feature selection methods in paper II, 

showed that the choice of selection procedure can have major effect on the cluster 

analysis. Relatively low overlap of the 1000 selected genes between the best 

performing methods was observed. This suggests that it might be beneficial to 

combine feature selection methods. The performance of different feature 

selection methods were compared to a case where no feature selection was 

applied. The results showed that the average performance of the 13 selection 

methods was lower than the negative control (no selection) in three of the data 

sets. This highlights some of the dangers with unsupervised feature selection, 

where if unlucky, the selection will reduce the performance.  

In paper III, we identified three molecular subtypes of bone metastasis from 

patients with prostate cancer using cluster analysis. We showed that the results 

were robust, by applying five different clustering algorithms that all generated 

very similar partitions of the patients, see Figure 5. Using the 20 most 

differentially expressed genes with respect to the defined subtypes, we 

constructed a classification model. The model was applied to an external data set 

and the classification result showed frequencies of the subtypes comparable to 

those observed in our data.  
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Figure 5. Agreement of five clustering partitions of bone metastasis samples from patients with 

prostate cancer. The clustering was performed on the first two principal components.   

In paper IV, we presented a novel clustering method that can detect clusters in 

different parts of the feature space. We used it to construct possible biomarkers 

based on methylation data from patients with kidney cancer (clear cell renal 

carcinoma). Today, a model utilizing only clinical data is used to classify patients 

into risk categories with different follow up-strategies. Our results showed that 

methylation data could be used together with clinical data to improve risk 

classifications.  
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9. Discussion  

Talking about performance of feature selection methods or clustering methods 

can be confusing. A low similarity to the gold standard does not necessarily imply 

that the method worked poorly. It can indicate that the method identified some 

other partition in the data. When considering data from human samples, there 

will exist several factors that can be used to distinguish the samples and many of 

them are not known to us.  

In the unsupervised case, we cannot use class information or follow-up data to 

select informative features. We can search for features with high variation among 

samples or features with clear peaks in their distribution, but we have no way to 

tell if these attributes are related to disease subtype. The example in Figure 3, 

show the density of gene expression for one gene measured in tumor samples 

from patients with brain cancer.  Although the distribution has two quite distinct 

peaks, the gene holds very little information related to our defined gold standard 

partition but it is probably very informative for some other partition of the data.  

For three of the data sets in paper II, the average clustering performance (based 

on genes selected by the 13 different feature selection methods) were lower than 

the performance using clustering based on all genes. This suggest the presence of 

strong genetic signals unrelated to our defined gold standard.  

There are many factors that affect the ability to identify cancer subtypes. Aside 

from clustering methods, we have analyzed some pre-processing choices and data 

characteristics. However, there is a need for further investigations to see how 

feature selection methods are affected by e.g. imbalance of subtypes and 

determining how different normalization procedures affect feature selection 

methods. We observed that the overlap of selected genes between high 

performing selection methods were low, and it would be of interest to investigate 

further if it is possible to combine different gene selection methods to improve 

clustering results.  
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10. Summary of papers 

10.1. Paper I 

In paper I, entitled Cluster analysis on high dimensional RNA-seq data with 

applications to cancer research – An evaluation study, we studied changes in the 

ability to identify cancer subtypes based on different choices of pre-processing 

and clustering algorithms. The performance was evaluated on publicly available 

gene expression data from four cancer types. The true subtypes were known in 

advanced and used for evaluation, whereas the analyses were unsupervised. Both 

the choice of feature reduction/selection method and clustering algorithm had an 

effect on the ability of identifying cancer subtypes, but with big differences in 

ranking of the methods between the data sets, it was hard to draw any general 

conclusions. The results showed that the benefit of obtaining a more 

homogeneous data by dividing the samples by gender was greater than the 

disadvantage caused by smaller sample sizes. The study was performed on a 

variety of different sample sizes and using different distributions of the 

underlying subtypes. 

10.2. Paper II 

Paper II, Comparison of methods for variable selection in clustering of high-

dimensional RNA-sequencing data to identify cancer subtypes, compares 13 

feature selection methods by applying them to four human cancer RNA-seq data 

sets before performing cluster analysis to identify cancer subtypes. The 

performance was evaluated by comparing to the case were 1) no selection was 

performed, 2) to a supervised approach and 3) to a random selection. The 

characteristics of the top ranked genes were studied and the overlap of selected 

genes was compared between the different methods. The study showed that the 

dip-test and the bimodality index performed among the best, whereas two 

methods based on co-expression between genes performed poorly. However, the 

performance was dependent on data set and the distribution of cancer subtypes.  

Low overlap of top ranked methods suggests that it might be beneficial to 

combine two or more gene selection methods. 

10.3. Paper III 

Robust clustering identified subtypes in patients with prostate cancer in the third 

paper, Gene expression profiles define molecular subtypes of prostate cancer 

bone metastasis with different outcome and morphology traceable back to the 

primary tumor. The most common place for prostate cancer to spread is to the 

bone. At this advanced stage there is no cure, so the treatment is palliative. The 

aim in this paper was to identify variability in bone metastasis that could be of 
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importance for therapy. Clustering of gene expression profiles from bone 

metastases, revealed three subtypes with differences in outcome. Several 

clustering techniques were applied to the data, with very similar results, 

confirming the robustness of the identified subgroups. A classification model for 

the identified subtypes was built and later tested on an external data set, which 

resulted in subtype frequencies comparable to the training set.  

10.4. Paper IV 

In Paper IV, with the title: Combining epigenetic and clinicopathological 

variables improves prognostic prediction in clear cell Renal Cell Carcinoma, we 

combined methylation data with clinical data to improve prognostic prediction of 

patients with kidney cancer. The current clinical practice in Sweden to predict 

risk of progression for patients with clear cell renal cell carcinoma is based on 

clinical variables such as tumor diameter and histologic grade. The idea in this 

paper was to create new variables based on methylation profiles from tumor 

samples that could complement the clinical variables in the classification of 

disease progression. The variables were constructed by a novel two step clustering 

method, Directed Cluster Analysis. First, for each methylation site the samples 

were clustered into two groups, resulting in 0/1 profiles. At the next step, the 

profiles were clustered into groups and the mean methylation value taken over all 

methylation sites included in each group constituted the new variables. We 

treated the variables as potential biomarkers and used them in a classification 

model. Using our constructed variables resulted in approximately the same 

classification accuracy as using only the clinical variables. By combining our 

variables with previously identified biomarkers and clinical data we were able to 

build a classifier that was slightly better than the one that is in clinical use today. 

The idea behind the Directed Cluster Analysis is that sites that are affected by the 

same factor, e.g. gender, should have similar 0/1 profiles and hence cluster 

together. Calculating the majority vote for the samples in each cluster will result 

in different clusters for different subsets of the feature space. One can then 

compare the sample partitions with known factors to disregard partitions that are 

not of interest.  
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