Umeå University's logo

umu.sePublications
Change search
Link to record
Permanent link

Direct link
Gallampois, Christine
Alternative names
Publications (10 of 13) Show all publications
Berglund, Å. M. M., Gallampois, C., Ripszam, M., Larsson, H., Figueroa, D., Griniene, E., . . . Tysklind, M. (2023). Effects on the food-web structure and bioaccumulation patterns of organic contaminants in a climate-altered Bothnian Sea mesocosms. Frontiers in Marine Science, 10, Article ID 1244434.
Open this publication in new window or tab >>Effects on the food-web structure and bioaccumulation patterns of organic contaminants in a climate-altered Bothnian Sea mesocosms
Show others...
2023 (English)In: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 10, article id 1244434Article in journal (Refereed) Published
Abstract [en]

Climate change is expected to alter global temperature and precipitation patterns resulting in complex environmental impacts. The proposed higher precipitation in northern Scandinavia would increase runoff from land, hence increase the inflow of terrestrial dissolved organic matter (tDOM) in coastal regions. This could promote heterotrophic bacterial production and shift the food web structure, by favoring the microbial food web. The altered climate is also expected to affect transport and availability of organic micropollutants (MPs), with downstream effects on exposure and accumulation in biota. This study aimed to assess climate-induced changes in a Bothnian Sea food web structure as well as bioaccumulation patterns of MPs. We performed a mesocosms-study, focusing on aquatic food webs with fish as top predator. Alongside increased temperature, mesocosm treatments included tDOM and MP addition. The tDOM addition affected nutrient availability and boosted both phytoplankton and heterotrophic bacteria in our fairly shallow mesocosms. The increased tDOM further benefitted flagellates, ciliates and mesozooplankton, while the temperature increase and MP addition had minor effect on those organism groups. Temperature, on the other hand, had a negative impact on fish growth and survival, whereas tDOM and MP addition only had minor impact on fish. Moreover, there were indications that bioaccumulation of MPs in fish either increased with tDOM addition or decreased at higher temperatures. If there was an impact on bioaccumulation, moderately lipophilic MPs (log Kow 3.6 - 4.6) were generally affected by tDOM addition and more lipophilic MPs (log Kow 3.8 to 6.4) were generally affected by increased temperature. This study suggest that both increased temperatures and addition of tDOM likely will affect bioaccumulation patterns of MPs in shallow coastal regions, albeit with counteracting effects.

Place, publisher, year, edition, pages
Frontiers Media S.A., 2023
Keywords
organic contaminants, climate impact, food web, bioaccumulation, ecology, Bothnian Sea
National Category
Environmental Sciences Ecology
Identifiers
urn:nbn:se:umu:diva-217906 (URN)10.3389/fmars.2023.1244434 (DOI)001092680700001 ()
Funder
Ecosystem dynamics in the Baltic Sea in a changing climate perspective - ECOCHANGE, 2009-149The Kempe Foundations
Available from: 2023-12-20 Created: 2023-12-20 Last updated: 2023-12-20Bibliographically approved
Oesterle, P., Gallampois, C. & Jansson, S. (2023). Fate of trimethoprim, sulfamethoxazole and caffeine after hydrothermal regeneration of activated carbon. Journal of Cleaner Production, 421, Article ID 139477.
Open this publication in new window or tab >>Fate of trimethoprim, sulfamethoxazole and caffeine after hydrothermal regeneration of activated carbon
2023 (English)In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 421, article id 139477Article in journal (Refereed) Published
Abstract [en]

Emerging contaminants are found in all parts of our environment. Adsorption of these contaminants by activated carbon in water treatment plants is well-known; however, a problem resides in the handling of the spent adsorbents. As current regenerative technologies are expensive, the adsorbents are often destructed or landfilled. Here, we examine a novel regeneration method for the used adsorbents with subcritical water – i.e., hydrothermal treatment. The degradation of three well-known emerging contaminants – caffeine, trimethoprim and sulfamethoxazole – was studied with regard to processing temperature (160–280 °C), concentration (2 and 20 mg/L), and the impact of adsorbents. In addition to trimethoprim in the mix at 20 mg/L, the other contaminants were entirely degraded at 280 °C. To obtain insight into transformation products formed during hydrothermal regeneration, we performed non-target and targeted analyses with LC-MS-QTOF using two types of columns, C18 and ZIC-HILIC. This approach ensured a wide range of hydrophilicities. Results showed more transformation products for trimethoprim (20) compared to sulfamethoxazole and caffeine (4). To assess the regeneration efficiencies of the activated carbons, we conducted three cycles of regeneration at 280 °C and between 61 and 120 % degradation was achieved. Moreover, only two transformation products were detected and readsorbed on the adsorbent after regeneration. Hydrothermal regeneration efficiently degraded the target emerging contaminants, suggesting a potential approach for enabling alternative, sequential uses for regenerated activated carbon.

Place, publisher, year, edition, pages
Elsevier, 2023
Keywords
Non-target analysis, Adsorption, Emerging contaminants, Hydrochar, Transformation products, HTC
National Category
Analytical Chemistry
Research subject
Analytical Chemistry
Identifiers
urn:nbn:se:umu:diva-215195 (URN)10.1016/j.jclepro.2023.139477 (DOI)2-s2.0-85175552036 (Scopus ID)
Funder
Bio4EnergyUmeå University
Note

Originally included in thesis in manuscript form. 

Available from: 2023-10-11 Created: 2023-10-11 Last updated: 2023-11-27Bibliographically approved
Andersson, A., Grinienė, E., Berglund, Å. M. M., Brugel, S., Gorokhova, E., Figueroa, D., . . . Tysklind, M. (2023). Microbial food web changes induced by terrestrial organic matter and elevated temperature in the coastal northern Baltic Sea. Frontiers in Marine Science, 10, Article ID 1170054.
Open this publication in new window or tab >>Microbial food web changes induced by terrestrial organic matter and elevated temperature in the coastal northern Baltic Sea
Show others...
2023 (English)In: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 10, article id 1170054Article in journal (Refereed) Published
Abstract [en]

Climate change has been projected to cause increased temperature and amplified inflows of terrestrial organic matter to coastal areas in northern Europe. Consequently, changes at the base of the food web favoring heterotrophic bacteria over phytoplankton are expected, affecting the food web structure. We tested this hypothesis using an outdoor shallow mesocosm system in the northern Baltic Sea in early summer, where the effects of increased temperature (+ 3°C) and terrestrial matter inputs were studied following the system dynamics and conducting grazing experiments. Juvenile perch constituted the highest trophic level in the system, which exerted strong predation on the zooplankton community. Perch subsequently released the microbial food web from heavy grazing by mesozooplankton. Addition of terrestrial matter had a stronger effect on the microbial food web than the temperature increase, because terrestrial organic matter and accompanying nutrients promoted both heterotrophic bacterial production and phytoplankton primary production. Moreover, due to the shallow water column in the experiment, terrestrial matter addition did not reduce the light below the photosynthesis saturation level, and in these conditions, the net-autotrophy was strengthened by terrestrial matter enrichment. In combination with elevated temperature, the terrestrial matter addition effects were intensified, further shifting the size distribution of the microbial food web base from picoplankton to microphytoplankton. These changes up the food web led to increase in the biomass and proportion of large-sized ciliates (>60 µm) and rotifers. Despite the shifts in the microbial food web size structure, grazing experiments suggested that the pathway from picoplankton to nano- and microzooplankton constituted the major energy flow in all treatments. The study implies that the microbial food web compartments in shallow coastal waters will adjust to climate induced increased inputs of terrestrial matter and elevated temperature, and that the major energy path will flow from picoplankton to large-sized ciliates during the summer period.

Place, publisher, year, edition, pages
Frontiers Media S.A., 2023
Keywords
mesocosm experiment, climate change, microbial food web, Baltic Sea, terrestrial matter effects, temperature effect
National Category
Ecology
Identifiers
urn:nbn:se:umu:diva-212872 (URN)10.3389/fmars.2023.1170054 (DOI)2-s2.0-85167351094 (Scopus ID)
Funder
Swedish Institute, 00140/2014Swedish Research Council Formas, 2019/0007Ecosystem dynamics in the Baltic Sea in a changing climate perspective - ECOCHANGE
Available from: 2023-08-14 Created: 2023-08-14 Last updated: 2023-08-18Bibliographically approved
Rebryk, A., Gallampois, C. & Haglund, P. (2022). A time-trend guided non-target screening study of organic contaminants in Baltic Sea harbor porpoise (1988–2019), guillemot (1986–2019), and white-tailed sea eagle (1965–2017) using gas chromatography–high-resolution mass spectrometry. Science of the Total Environment, 829, Article ID 154620.
Open this publication in new window or tab >>A time-trend guided non-target screening study of organic contaminants in Baltic Sea harbor porpoise (1988–2019), guillemot (1986–2019), and white-tailed sea eagle (1965–2017) using gas chromatography–high-resolution mass spectrometry
2022 (English)In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 829, article id 154620Article in journal (Refereed) Published
Abstract [en]

The rate of decline in regulated persistent organic pollutant (POP) concentrations in Baltic Sea biota has leveled off in recent years, with new contaminants frequently being discovered. There is, therefore, a need for comprehensive approaches to study occurrence and temporal trends of a wide range of environmental contaminants, including legacy POPs, contaminants of emerging concern (CECs), and new contaminants. In the current work, non-target screening (NTS) workflows were developed and used for, to the best of our knowledge, the first time-trend directed NTS of biota using gas chromatography–high-resolution mass spectrometry (GC-HRMS). To maximize contaminant coverage, both electron ionization (EI) and electron capture negative ion chemical ionization (ECNI) were used. The EI data were treated using highly automated workflows to find, prioritize, and tentatively identify contaminants with statistically significant temporal trends. The ECNI data were manually processed and reviewed prior to time-trend analysis. Altogether, more than 300 tentatively identified contaminants were found to have significant temporal trends in samples of Baltic guillemot, harbor porpoise, or white-tailed sea eagle. Significant decreases were found for many regulated chemicals, as could be expected, such as PCBs, polychlorinated terphenyls, chlorobenzenes, toxaphenes, DDT, other organochlorine pesticides, and tri- and tetra- bromodiphenyl ethers (BDEs). The rate of decline of legacy POPs agreed well with data reported from targeted analyses. Significant increases were observed for small polycyclic aromatic hydrocarbons, heptaBDEs, CECs, and terpenes and related compounds. The CECs included, among others, one plasticizer tributyl acetylcitrate (ATBC), two antioxidants 2,6-bis(1,1-dimethylethyl)phenol and 2,6-bis(tert-butyl)-4-(4-morpholinyl-methyl)phenol, and two compounds used in polymer production, trimethyl isocyanurate and 2-mercaptobenzothiazole, which had not previously been reported in biota. Their increased concentrations in biota indicate increased use and release. The increase in ATBC may be linked to increased use of it as a substitute for di-2-ethylhexyl phthalate (DEHP), which has been phased out over the last decade.

Place, publisher, year, edition, pages
Elsevier, 2022
Keywords
Temporal trends, Non-target screening, GC-HRMS, Contaminants of emerging concern, The Baltic Sea, Top consumer species
National Category
Environmental Sciences
Research subject
environmental science
Identifiers
urn:nbn:se:umu:diva-193243 (URN)10.1016/j.scitotenv.2022.154620 (DOI)000793203100012 ()35306077 (PubMedID)2-s2.0-85126536226 (Scopus ID)
Funder
Mistra - The Swedish Foundation for Strategic Environmental Research
Available from: 2022-03-22 Created: 2022-03-22 Last updated: 2024-07-02Bibliographically approved
Rodríguez, J., Gallampois, C., Haglund, P., Timonen, S. & Rowe, O. (2021). Bacterial communities as indicators of environmental pollution by POPs in marine sediments. Environmental Pollution, 268, Article ID 115690.
Open this publication in new window or tab >>Bacterial communities as indicators of environmental pollution by POPs in marine sediments
Show others...
2021 (English)In: Environmental Pollution, ISSN 0269-7491, E-ISSN 1873-6424, Vol. 268, article id 115690Article in journal (Refereed) Published
Abstract [en]

Decades of intensive discharge from industrial activities into coastal systems has resulted in the accumulation of a variety of persistent organic pollutants (POPs) in marine waters and sediments, having detrimental impacts on aquatic ecosystems and the resident biota. POPs are among the most hazardous chemicals originating from industrial activities due to their biotoxicity and resistance to environmental degradation. Bacterial communities are known to break down many of these aromatic compounds, and different members of naturally occurring bacterial consortia have been described to work in syntrophic association to thrive in heavily contaminated waters and sediments, making them potential candidates as bioindicators of environmental pollution. In this study environmental, sampling was combined with chemical analysis of pollutants and high-resolution sequencing of bacterial communities using Next Generation Sequencing molecular biology tools. The aim of the present study was to describe the bacterial communities from marine sediments containing high loads of POPs and to identify relevant members of the resident microbial communities that may act as bioindicators of contamination. Marine sediments were collected from a coastal bay area of the Baltic Sea historically influenced by intense industrial activity, including metal smelting, oil processing, and pulp and paper production. Different types of POPs were detected at high concentrations. Fiberbank sediments, resulting from historic paper industry activity, were found to harbour a clearly distinct bacterial community including a number of bacterial taxa capable of cellulolytic and dechlorination activities. Our findings indicate that specific members of the bacterial communities thrive under increasing levels of POPs in marine sediments, and that the abundances of certain taxa correlate with specific POPs (or groups), which could potentially be employed in monitoring, status assessment and environmental management purposes.

Place, publisher, year, edition, pages
Elsevier, 2021
Keywords
Bacterial communities, Persistent organic pollutants, Environmental indicators, Environmental pollution, Baltic sea
National Category
Environmental Sciences
Identifiers
urn:nbn:se:umu:diva-177526 (URN)10.1016/j.envpol.2020.115690 (DOI)000600553000014 ()33045590 (PubMedID)2-s2.0-85092365016 (Scopus ID)
Funder
Swedish Research Council Formas
Available from: 2020-12-11 Created: 2020-12-11 Last updated: 2023-09-05Bibliographically approved
Bataineh, M., Schymanski, E. L. & Gallampois, C. M. .. (2021). Recent analytical methods for risk assessment of emerging contaminants in ecosystems. In: Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering: (pp. 739-778). Elsevier
Open this publication in new window or tab >>Recent analytical methods for risk assessment of emerging contaminants in ecosystems
2021 (English)In: Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering, Elsevier, 2021, p. 739-778Chapter in book (Refereed)
Abstract [en]

The analysis of emerging contaminants (ECs) remains a dynamic and challenging field because this involves analyzing chemicals with widely varying properties in a large variety of environmental matrices. Usually, concentration levels of ECs are particularly low, such that sensitive and selective analytical methods are required for their analysis. This chapter focuses on five classes of ECs (pharmaceuticals and personal care products, disinfection by-products, perfluorinated compounds, polybrominated diphenyl ethers, and benzotriazoles and dioxane [B and D]) in terms of their occurrence and level of detection. It also highlights the rule of regulatory agencies on the EC detection limit. Sampling techniques used to detect ECs in different environmental matrices are discussed, such as (1) water grab samples from inland and offshore; (2) large-volume solid-phase extraction for water samples; (3) passive samplers (Polar Organic Chemical Integrative Sampler, Chemcatcher, Altesil SR sheet, and semipermeable membrane devices); (4) sediment grab samples (Van Veen and gravity-free fall corer); (5) biota grab samples with different trophic levels (sediment microorganisms, mussels, fish, and mammals; and (6) air passive samplers (inland and/or offshore). In addition, the latest progress is reviewed in sample preparation, extraction, and cleanup.

Place, publisher, year, edition, pages
Elsevier, 2021
Keywords
Air, Biological tissues, Electrospray ionization, Gas chromatography, Liquid chromatography, Mass spectrometry, Organic emerging contaminants, Sample preparation, Sampling techniques, Sediments, Soils, Water (surface and groundwater)
National Category
Analytical Chemistry Environmental Sciences
Identifiers
urn:nbn:se:umu:diva-202918 (URN)10.1016/B978-0-12-809582-9.00014-1 (DOI)2-s2.0-85127020289 (Scopus ID)9780128095829 (ISBN)
Available from: 2023-01-13 Created: 2023-01-13 Last updated: 2023-01-13Bibliographically approved
Blum, K. M., Gallampois, C., Andersson, P. L., Renman, G., Renman, A. & Haglund, P. (2019). Comprehensive assessment of organic contaminant removal from on-site sewage treatment facility effluent by char-fortified filter beds. Journal of Hazardous Materials, 361, 111-122
Open this publication in new window or tab >>Comprehensive assessment of organic contaminant removal from on-site sewage treatment facility effluent by char-fortified filter beds
Show others...
2019 (English)In: Journal of Hazardous Materials, ISSN 0304-3894, E-ISSN 1873-3336, Vol. 361, p. 111-122Article in journal (Other academic) Published
Abstract [en]

The removal of organic contaminants from wastewater using cost-efficient and easily accessible methods have been increasingly studied in recent years. Most studies have focused on municipal sewage treatment plants; however, our study investigated treatment with char-fortified filter beds for on-site sewage treatment facilities (OSSFs). OSSFs are commonly used in rural and semi-urban areas all over the world to treat wastewater to reduce eutrophication and water-related diseases. To screen for a wide range of organic contaminants in order to improve the understanding of wastewater treatment efficiency and molecular properties, samples were taken from an OSSF field study site that used three filter types: sand, char-fortified sand, and char-fortified gas concrete. First, we screened for organic contaminants with state-of-the-art gas chromatography and liquid chromatography mass spectrometry-based targeted and untargeted analysis and then we developed quantitative structure-property relationship models to find the key molecular features responsible for the removal of organic contaminants. We identified 74 compounds, of which 24 were confirmed with reference standards. Amongst these 74 compounds were plasticizers, UV stabilizers, fragrances, pesticides, surfactant and polymer impurities, pharmaceuticals and their metabolites, and many biogenic compounds. Sand filters that are sometimes used as a last treatment step in OSSFs can remove hydrophobic contaminants. The addition of biochar significantly increases the removal of these and a few hydrophilic compounds (Wilcoxon signed-rank test, α = 0.05). Gas concrete did not appear to be suitable for the removal of organic contaminants. This study showed that, besides hydrophobic effects, biodegradation is the most important removal pathway in long-term field applications. However, further improvements are necessary to remove very hydrophilic contaminants as they were not removed with sand and biochar-fortified sand.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Screening, decentralized wastewater treatment systems, GC×GC-HRMS, LC IM HRMS, biochar, quantitative structure-property relationship
National Category
Analytical Chemistry
Identifiers
urn:nbn:se:umu:diva-144261 (URN)10.1016/j.jhazmat.2018.08.009 (DOI)000449125800013 ()30176409 (PubMedID)2-s2.0-85054082864 (Scopus ID)
Funder
Swedish Research Council Formas, 216-2012-2101
Available from: 2018-01-29 Created: 2018-01-29 Last updated: 2023-03-24Bibliographically approved
Liem-Nguyen, V., Huynh, K., Gallampois, C. & Björn, E. (2019). Determination of picomolar concentrations of thiol compounds in natural waters and biological samples by tandem mass spectrometry with online preconcentration and isotope-labeling derivatization. Analytica Chimica Acta, 1067, 71-78
Open this publication in new window or tab >>Determination of picomolar concentrations of thiol compounds in natural waters and biological samples by tandem mass spectrometry with online preconcentration and isotope-labeling derivatization
2019 (English)In: Analytica Chimica Acta, ISSN 0003-2670, E-ISSN 1873-4324, Vol. 1067, p. 71-78Article in journal (Refereed) Published
Abstract [en]

We present a sensitive, selective and robust method for the determination of 14 thiol compounds in aqueous samples. Thiols were derivatized with omega-bromoacetonylquinolinium bromide (BQB) and its deuterium labeled equivalent D7-ω-bromoacetonylquinolinium bromide (D7). Derivatized thiols were preconcentrated by online solid-phase extraction (SPE) followed by liquid chromatography separation and electrospray ionization tandem mass spectrometry determination (SPE/LC-ESI-MS/MS). The robustness of the method was validated for wide ranges in pH, salinity, and concentrations of sulfide and dissolved organic carbon (DOC) to cover contrasting natural water types. The limits of detection (LODs) for the thiols were 3.1-66 pM. Between 6 and 14 of the thiols were detected in different natural sample types at variable concentrations: boreal wetland porewater (0.7-51 nM), estuarine sediment porewater (50 pM-11 nM), coastal sea water (60 pM-16 nM), and sulfate reducing bacterium cultures (80 pM-4 nM). MS/MS fragmentation of the compounds produces two pairs of common product ions, m/z 130.2/137.1 and 218.1/225.1, which enables scanning for unknown thiols in precursor ion scan mode. Using this approach, we identified cysteine, mercaptoacetic acid, N-acetyl-L-cysteine and sulfurothioic S-acid in boreal wetland porewater. The performance of the developed method sets a new state of the art for the determination of thiol compounds in environmental and biological samples.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Thiol compounds, Tandem mass spectrometry, On-line preconcentration, Natural waters
National Category
Analytical Chemistry
Identifiers
urn:nbn:se:umu:diva-159046 (URN)10.1016/j.aca.2019.03.035 (DOI)000466150300007 ()31047151 (PubMedID)2-s2.0-85063501058 (Scopus ID)
Available from: 2019-05-21 Created: 2019-05-21 Last updated: 2024-07-02Bibliographically approved
Rostkowski, P., Haglund, P., Aalizadeh, R., Alygizakis, N., Thomaidis, N., Beltran Arandes, J., . . . Yang, C. (2019). The strength in numbers: comprehensive characterization of house dust using complementary mass spectrometric techniques. Analytical and Bioanalytical Chemistry, 411(10), 1957-1977
Open this publication in new window or tab >>The strength in numbers: comprehensive characterization of house dust using complementary mass spectrometric techniques
Show others...
2019 (English)In: Analytical and Bioanalytical Chemistry, ISSN 1618-2642, E-ISSN 1618-2650, Vol. 411, no 10, p. 1957-1977Article in journal (Refereed) Published
Abstract [en]

Untargeted analysis of a composite house dust sample has been performed as part of a collaborative effort to evaluate the progress in the field of suspect and nontarget screening and build an extensive database of organic indoor environment contaminants. Twenty-one participants reported results that were curated by the organizers of the collaborative trial. In total, nearly 2350 compounds were identified (18%) or tentatively identified (25% at confidence level 2 and 58% at confidence level 3), making the collaborative trial a success. However, a relatively small share (37%) of all compounds were reported by more than one participant, which shows that there is plenty of room for improvement in the field of suspect and nontarget screening. An even a smaller share (5%) of the total number of compounds were detected using both liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). Thus, the two MS techniques are highly complementary. Most of the compounds were detected using LC with electrospray ionization (ESI) MS and comprehensive 2D GC (GCxGC) with atmospheric pressure chemical ionization (APCI) and electron ionization (EI), respectively. Collectively, the three techniques accounted for more than 75% of the reported compounds. Glycols, pharmaceuticals, pesticides, and various biogenic compounds dominated among the compounds reported by LC-MS participants, while hydrocarbons, hydrocarbon derivatives, and chlorinated paraffins and chlorinated biphenyls were primarily reported by GC-MS participants. Plastics additives, flavor and fragrances, and personal care products were reported by both LC-MS and GC-MS participants. It was concluded that the use of multiple analytical techniques was required for a comprehensive characterization of house dust contaminants. Further, several recommendations are given for improved suspect and nontarget screening of house dust and other indoor environment samples, including the use of open-source data processing tools. One of the tools allowed provisional identification of almost 500 compounds that had not been reported by participants.

Place, publisher, year, edition, pages
Springer, 2019
Keywords
House dust, Suspect and nontarget analysis, Collaborative trial, Complementary analytical techniques, Mass spectrometry
National Category
Analytical Chemistry
Identifiers
urn:nbn:se:umu:diva-158583 (URN)10.1007/s00216-019-01615-6 (DOI)000464714400004 ()30830245 (PubMedID)2-s2.0-85062728989 (Scopus ID)
Available from: 2019-05-27 Created: 2019-05-27 Last updated: 2019-05-27Bibliographically approved
Massei, R., Hollert, H., Krauss, M., von Tümpling, W., Weidauer, C., Haglund, P., . . . Brack, W. (2019). Toxicity and neurotoxicity profiling of contaminated sediments from Gulf of Bothnia (Sweden): a multi-endpoint assay with Zebrafish embryos. Environmental Sciences Europe, 31, Article ID 8.
Open this publication in new window or tab >>Toxicity and neurotoxicity profiling of contaminated sediments from Gulf of Bothnia (Sweden): a multi-endpoint assay with Zebrafish embryos
Show others...
2019 (English)In: Environmental Sciences Europe, ISSN 2190-4707, E-ISSN 2190-4715, Vol. 31, article id 8Article in journal (Refereed) Published
Abstract [en]

The toxicological characterization of sediments is an essential task to monitor the quality of aquatic environments. Many hazardous pollutants may accumulate in sediments and pose a risk to the aquatic community. The present study provides an attempt to integrate a diagnostic whole mixture assessment workflow based on a slightly modified Danio rerio embryo acute toxicity test with chemical characterization. Danio rerio embryos were directly exposed to sieved sediment (≤ 63 μm) for 96 h. Sediment samples were collected from three polluted sites (Kramfors, Sundsvall and Örnsköldsvik) in the Gulf of Bothnia (Sweden) which are characterized by a long history of pulp and paper industry impact. Effect data were supported by chemical analyses of 237 organic pollutants and 30 trace elements.

Place, publisher, year, edition, pages
Springer, 2019
National Category
Other Chemistry Topics
Identifiers
urn:nbn:se:umu:diva-156256 (URN)10.1186/s12302-019-0188-y (DOI)000457727700001 ()2-s2.0-85061100570 (Scopus ID)
Projects
EcoChange
Available from: 2019-02-11 Created: 2019-02-11 Last updated: 2023-03-23Bibliographically approved
Organisations

Search in DiVA

Show all publications