Umeå University's logo

umu.sePublikasjoner
Endre søk
Link to record
Permanent link

Direct link
Johansson, Stefan
Publikasjoner (10 av 17) Visa alla publikasjoner
Araújo, J., López Sánchez, F., Johansson, S., Westman, A. & Bodin, M. (2025). Efficient computation and visualization of ionospheric volumetric images for the enhanced interpretation of Incoherent scatter radar data. Applied Computing and Geosciences, 26, Article ID 100245.
Åpne denne publikasjonen i ny fane eller vindu >>Efficient computation and visualization of ionospheric volumetric images for the enhanced interpretation of Incoherent scatter radar data
Vise andre…
2025 (engelsk)Inngår i: Applied Computing and Geosciences, E-ISSN 2590-1974, Vol. 26, artikkel-id 100245Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Incoherent scatter radar (ISR) techniques provide reliable measurements for the analysis of ionospheric plasma. Recent developments in ISR technologies allow the generation of high-resolution 3D data. Examples of such technologies employ the so-called phased-array antenna systems like the AMISR systems in North America or the upcoming EISCAT_3D in the Northern Fennoscandia region. EISCAT_3D will be capable of generating the highest resolution ISR datasets that have ever been measured. We present a novel fast computational strategy for the generation of high-resolution and smooth volumetric ionospheric images that represent ISR data. Through real-time processing, our computational framework will enable a fast decision-making during the monitoring process, where the experimental parameters are adapted in real time as the radars monitor specific phenomena. Real-time monitoring would allow the radar beams to be conveniently pointed at regions of interest and would therefore increase the science impact. We describe our strategy, which implements a flexible mesh generator along with an efficient interpolator specialized for ISR technologies. The proposed strategy is generic in the sense that it can be applied to a large variety of data sets and supports interactive visual analysis and exploration of ionospheric data, supplemented by interactive data transformations and filters.

sted, utgiver, år, opplag, sider
Elsevier, 2025
Emneord
Flexible mesh generation, Incoherent scatter radar, Large-scale ISR data, Real-time monitoring, Volumetric ionospheric images
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-239177 (URN)10.1016/j.acags.2025.100245 (DOI)001498519900001 ()2-s2.0-105005496566 (Scopus ID)
Forskningsfinansiär
Marcus and Amalia Wallenberg Foundation
Tilgjengelig fra: 2025-06-13 Laget: 2025-06-13 Sist oppdatert: 2025-06-13bibliografisk kontrollert
Dmytryshyn, A., Johansson, S., Kågström, B. & Van Dooren, P. (2020). Geometry of Matrix Polynomial Spaces. Foundations of Computational Mathematics, 20(3), 423-450
Åpne denne publikasjonen i ny fane eller vindu >>Geometry of Matrix Polynomial Spaces
2020 (engelsk)Inngår i: Foundations of Computational Mathematics, ISSN 1615-3375, E-ISSN 1615-3383, Vol. 20, nr 3, s. 423-450Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We study how small perturbations of general matrix polynomials may change their elementary divisors and minimal indices by constructing the closure hierarchy (stratification) graphs of matrix polynomials' orbits and bundles. To solve this problem, we construct the stratification graphs for the first companion Fiedler linearization of matrix polynomials. Recall that the first companion Fiedler linearization as well as all the Fiedler linearizations is matrix pencils with particular block structures. Moreover, we show that the stratification graphs do not depend on the choice of Fiedler linearization which means that all the spaces of the matrix polynomial Fiedler linearizations have the same geometry (topology). This geometry coincides with the geometry of the space of matrix polynomials. The novel results are illustrated by examples using the software tool StratiGraph extended with associated new functionality.

sted, utgiver, år, opplag, sider
Springer, 2020
Emneord
Matrix polynomials, Stratifications, Matrix pencils, Fiedler linearization, Canonical structure information, Orbit, Bundle
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-163512 (URN)10.1007/s10208-019-09423-1 (DOI)000531825900002 ()2-s2.0-85068193369 (Scopus ID)
Forskningsfinansiär
eSSENCE - An eScience CollaborationSwedish Research Council, E0485301
Tilgjengelig fra: 2019-09-24 Laget: 2019-09-24 Sist oppdatert: 2020-10-15bibliografisk kontrollert
Dmytryshyn, A., Johansson, S. & Kågström, B. (2017). Canonical structure transitions of system pencils. SIAM Journal on Matrix Analysis and Applications, 38(4), 1249-1267
Åpne denne publikasjonen i ny fane eller vindu >>Canonical structure transitions of system pencils
2017 (engelsk)Inngår i: SIAM Journal on Matrix Analysis and Applications, ISSN 0895-4798, E-ISSN 1095-7162, Vol. 38, nr 4, s. 1249-1267Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We investigate the changes of the canonical structure information under small perturbations for a system pencil associated with a (generalized) linear time-invariant state-space system. The equivalence class of the pencil is taken with respect to feedback-injection equivalence transformations. The results allow us to track possible changes of important linear system characteristics under small perturbations.

sted, utgiver, år, opplag, sider
Society for Industrial and Applied Mathematics, 2017
HSV kategori
Forskningsprogram
administrativ databehandling
Identifikatorer
urn:nbn:se:umu:diva-139924 (URN)10.1137/16M1097857 (DOI)000418665600009 ()2-s2.0-85022337450 (Scopus ID)
Forskningsfinansiär
Swedish Research Council, E0485301Swedish Research Council, eSSENCE
Tilgjengelig fra: 2017-09-26 Laget: 2017-09-26 Sist oppdatert: 2023-03-24bibliografisk kontrollert
Dmytryshyn, A., Johansson, S. & Kågström, B. (2015). Canonical structure transitions of system pencils.
Åpne denne publikasjonen i ny fane eller vindu >>Canonical structure transitions of system pencils
2015 (engelsk)Rapport (Annet vitenskapelig)
Abstract [en]

We investigate the changes under small perturbations of the canonical structure information for a system pencil (A B C D) − s (E 0 0 0), det(E) ≠ 0, associated with a (generalized) linear time-invariant state-space system. The equivalence class of the pencil is taken with respect to feedback-injection equivalence transformation. The results allow to track possible changes under small perturbations of important linear system characteristics.

Publisher
s. 26
Serie
Report / UMINF, ISSN 0348-0542 ; 15.15
Emneord
linear system, descriptor system, state-space system, system pencil, matrix pencil, orbit, bundle, perturbation, versal deformation, stratification
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-111632 (URN)
Forskningsfinansiär
eSSENCE - An eScience CollaborationSwedish Research Council, E048530
Tilgjengelig fra: 2015-11-18 Laget: 2015-11-18 Sist oppdatert: 2018-06-07bibliografisk kontrollert
Dmytryshyn, A., Johansson, S., Kågström, B. & Van Dooren, P. (2015). Geometry of spaces for matrix polynomial Fiedler linearizations.
Åpne denne publikasjonen i ny fane eller vindu >>Geometry of spaces for matrix polynomial Fiedler linearizations
2015 (engelsk)Rapport (Annet vitenskapelig)
Abstract [en]

We study how small perturbations of matrix polynomials may change their elementary divisors and minimal indices by constructing the closure hierarchy graphs (stratifications) of orbits and bundles of matrix polynomial Fiedler linearizations. We show that the stratifica-tion graphs do not depend on the choice of Fiedler linearization which means that all the spaces of the matrix polynomial Fiedler lineariza-tions have the same geometry (topology). The results are illustrated by examples using the software tool StratiGraph.

Publisher
s. 28
Serie
Report / UMINF, ISSN 0348-0542 ; 15.17
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-111639 (URN)
Forskningsfinansiär
Swedish Research Council, E0485301eSSENCE - An eScience Collaboration
Tilgjengelig fra: 2015-11-18 Laget: 2015-11-18 Sist oppdatert: 2018-06-07bibliografisk kontrollert
Dmytryshyn, A., Johansson, S. & Kågström, B. (2013). Codimension computations of congruence orbits of matrices, symmetric and skew-symmetric matrix pencils using Matlab. Umeå: Umeå Universitet
Åpne denne publikasjonen i ny fane eller vindu >>Codimension computations of congruence orbits of matrices, symmetric and skew-symmetric matrix pencils using Matlab
2013 (engelsk)Rapport (Annet vitenskapelig)
Abstract [en]

Matlab functions to work with the canonical structures for congru-ence and *congruence of matrices, and for congruence of symmetricand skew-symmetric matrix pencils are presented. A user can providethe canonical structure objects or create (random) matrix examplesetups with a desired canonical information, and compute the codi-mensions of the corresponding orbits: if the structural information(the canonical form) of a matrix or a matrix pencil is known it isused for the codimension computations, otherwise they are computednumerically. Some auxiliary functions are provided too. All thesefunctions extend the Matrix Canonical Structure Toolbox.

sted, utgiver, år, opplag, sider
Umeå: Umeå Universitet, 2013. s. 41
Serie
Report / UMINF, ISSN 0348-0542 ; 13.18
Emneord
Congruence; *congruence; Symmetric matrix pencils; Skew-symmetric matrix pencils; Orbits; Codimension; MATLAB
HSV kategori
Forskningsprogram
numerisk analys; datalogi
Identifikatorer
urn:nbn:se:umu:diva-80524 (URN)
Tilgjengelig fra: 2013-09-19 Laget: 2013-09-19 Sist oppdatert: 2018-06-08bibliografisk kontrollert
Johansson, S., Kågström, B. & Van Dooren, P. (2013). Stratification of full rank polynomial matrices. Linear Algebra and its Applications, 439(4), 1062-1090
Åpne denne publikasjonen i ny fane eller vindu >>Stratification of full rank polynomial matrices
2013 (engelsk)Inngår i: Linear Algebra and its Applications, ISSN 0024-3795, E-ISSN 1873-1856, Vol. 439, nr 4, s. 1062-1090Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We show that perturbations of polynomial matrices of full normal-rank can be analyzed viathe study of perturbations of companion form linearizations of such polynomial matrices.It is proved that a full normal-rank polynomial matrix has the same structural elements asits right (or left) linearization. Furthermore, the linearized pencil has a special structurethat can be taken into account when studying its stratification. This yields constraintson the set of achievable eigenstructures. We explicitly show which these constraints are.These results allow us to derive necessary and sufficient conditions for cover relationsbetween two orbits or bundles of the linearization of full normal-rank polynomial matrices.The stratification rules are applied to and illustrated on two artificial polynomial matricesand a half-car passive suspension system with four degrees of freedom.

sted, utgiver, år, opplag, sider
Elsevier, 2013
Emneord
polynomial matrices, matrix pencils, linearization, perturbations, stratification, closure hierarchy, cover relations, StratiGraph
HSV kategori
Forskningsprogram
numerisk analys; reglerteknik
Identifikatorer
urn:nbn:se:umu:diva-71154 (URN)10.1016/j.laa.2012.12.013 (DOI)000321084700021 ()2-s2.0-84879881922 (Scopus ID)
Forskningsfinansiär
Swedish Foundation for Strategic Research , A3 02:128
Tilgjengelig fra: 2013-05-21 Laget: 2013-05-21 Sist oppdatert: 2023-03-24bibliografisk kontrollert
Kågström, B., Johansson, S. & Johansson, P. (2012). StratiGraph Tool: Matrix Stratifications in Control Applications. In: Lorenz T. Biegler, Stephen L. Champbell, Volker Mehrmann (Ed.), Control and Optimization with Differential-Algebraic Constraints: (pp. 79-103). Philadelphia: Society for Industrial and Applied Mathematics
Åpne denne publikasjonen i ny fane eller vindu >>StratiGraph Tool: Matrix Stratifications in Control Applications
2012 (engelsk)Inngår i: Control and Optimization with Differential-Algebraic Constraints / [ed] Lorenz T. Biegler, Stephen L. Champbell, Volker Mehrmann, Philadelphia: Society for Industrial and Applied Mathematics, 2012, s. 79-103Kapittel i bok, del av antologi (Fagfellevurdert)
Abstract [en]

In this contribution, the software tool StratiGraph for computing and visualizing closurehierarchy graphs associated with different orbit and bundle stratifications is presented. Inaddition, we review the underlying theory and illustrate how StratiGraph can be used toanalyze descriptor system models via their associated system pencils. The stratificationtheory provides information for a deeper understanding of how the dynamics of a controlsystem and its system characteristics behave under perturbations.

sted, utgiver, år, opplag, sider
Philadelphia: Society for Industrial and Applied Mathematics, 2012
Serie
Advances in Design and Control ; 23
Emneord
Stratification, differential-algebraic equations, descriptor systems, Kronecker structures, orbit, bundle, closure hierarchy, cover relations, StratiGraph
HSV kategori
Forskningsprogram
numerisk analys; reglerteknik
Identifikatorer
urn:nbn:se:umu:diva-61417 (URN)978-1-611972-24-5 (ISBN)
Forskningsfinansiär
eSSENCE - An eScience CollaborationSwedish Foundation for Strategic Research , A3 02:128
Tilgjengelig fra: 2012-11-13 Laget: 2012-11-13 Sist oppdatert: 2019-06-26bibliografisk kontrollert
Kågström, B., Johansson, S. & Johansson, P. (2011). StratiGraph Tool: Matrix Stratifications in Control Applications. Umeå: Department of Computing Science, Umeå University
Åpne denne publikasjonen i ny fane eller vindu >>StratiGraph Tool: Matrix Stratifications in Control Applications
2011 (engelsk)Rapport (Annet vitenskapelig)
Abstract [en]

In this contribution, the software tool StratiGraph for computing and visualizing closure hierarchy graphs associated with different orbit and bundle stratifications is presented. In addition, we review the underlying theory and illustrate how StratiGraph can be used to analyze descriptor system models via their associated system pencils. The stratification theory provides information for a deeper understanding of how the dynamics of a control system and its system characteristics behave under perturbations.

sted, utgiver, år, opplag, sider
Umeå: Department of Computing Science, Umeå University, 2011. s. 24
Serie
Report / UMINF, ISSN 0348-0542 ; 11.12
Emneord
Stratification, differential-algebraic equations, descriptor systems, Kronecker structures, orbit, bundle, closure hierarchy, cover relations, StratiGraph
HSV kategori
Forskningsprogram
numerisk analys; reglerteknik
Identifikatorer
urn:nbn:se:umu:diva-50774 (URN)
Eksternt samarbeid:
Tilgjengelig fra: 2012-01-02 Laget: 2011-12-21 Sist oppdatert: 2019-06-26bibliografisk kontrollert
Gusev, S., Johansson, S., Kågström, B., Shiriaev, A. & Varga, A. (2010). A numerical evaluation of solvers for the periodic riccati differential equation. BIT Numerical Mathematics, 50(2), 301-329
Åpne denne publikasjonen i ny fane eller vindu >>A numerical evaluation of solvers for the periodic riccati differential equation
Vise andre…
2010 (engelsk)Inngår i: BIT Numerical Mathematics, ISSN 0006-3835, E-ISSN 1572-9125, Vol. 50, nr 2, s. 301-329Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Efficient and accurate structure exploiting numerical methods for solvingthe periodic Riccati differential equation (PRDE) are addressed. Such methods areessential, for example, to design periodic feedback controllers for periodic controlsystems. Three recently proposed methods for solving the PRDE are presented andevaluated on challenging periodic linear artificial systems with known solutions and applied to the stabilization of periodic motions of mechanical systems. The first twomethods are of the type multiple shooting and rely on computing the stable invariantsubspace of an associated Hamiltonian system. The stable subspace is determinedusing either algorithms for computing an ordered periodic real Schur form of a cyclicmatrix sequence, or a recently proposed method which implicitly constructs a stabledeflating subspace from an associated lifted pencil. The third method reformulatesthe PRDE as a convex optimization problem where the stabilizing solution is approximatedby its truncated Fourier series. As known, this reformulation leads to a semidefiniteprogramming problem with linear matrix inequality constraints admitting aneffective numerical realization. The numerical evaluation of the PRDE methods, withfocus on the number of states (n) and the length of the period (T ) of the periodicsystems considered, includes both quantitative and qualitative results.

sted, utgiver, år, opplag, sider
Springer, 2010
Emneord
Periodic systems, Periodic Riccati differential equations, Orbital stabilization, Periodic real Schur form, Periodic eigenvalue reordering, Hamiltonian systems, Linear matrix inequalities, Numerical methods
HSV kategori
Forskningsprogram
numerisk analys
Identifikatorer
urn:nbn:se:umu:diva-39652 (URN)10.1007/s10543-010-0257-5 (DOI)000277283100005 ()2-s2.0-77952010194 (Scopus ID)
Tilgjengelig fra: 2011-02-03 Laget: 2011-02-03 Sist oppdatert: 2023-03-24bibliografisk kontrollert
Organisasjoner