Umeå University's logo

umu.sePublikasjoner
Endre søk
Link to record
Permanent link

Direct link
Publikasjoner (10 av 13) Visa alla publikasjoner
Leemans, D., Stokes, K. & Tranchida, P. (2025). Flag transitive geometries with trialities and no dualities coming from Suzuki groups. Journal of combinatorial theory. Series A (Print), 213, Article ID 106033.
Åpne denne publikasjonen i ny fane eller vindu >>Flag transitive geometries with trialities and no dualities coming from Suzuki groups
2025 (engelsk)Inngår i: Journal of combinatorial theory. Series A (Print), ISSN 0097-3165, E-ISSN 1096-0899, Vol. 213, artikkel-id 106033Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Recently, Leemans and Stokes constructed an infinite family of incidence geometries admitting trialities but no dualities from the groups PSL(2,q) (where q=p3n with p a prime and n>0 a positive integer). Unfortunately, these geometries are not flag transitive. In this paper, we work with the Suzuki groups Sz(q), where q=22e+1 with e a positive integer and 2e+1 is divisible by 3. For any odd integer m dividing q−1, q+2q+1 or q−2q+1 (i.e.: m is the order of some non-involutive element of Sz(q)), we construct geometries of type (m,m,m) that admit trialities but no dualities. We then prove that they are flag transitive when m=5, no matter the value of q. These geometries form the first infinite family of incidence geometries of rank 3 that are flag transitive and have trialities but no dualities. They are constructed using chamber systems and the trialities come from field automorphisms. These same geometries can also be considered as regular hypermaps with automorphism group Sz(q).

sted, utgiver, år, opplag, sider
Elsevier, 2025
Emneord
Incidence geometry, Suzuki groups, Triality
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-236497 (URN)10.1016/j.jcta.2025.106033 (DOI)001437806900001 ()2-s2.0-85219030745 (Scopus ID)
Tilgjengelig fra: 2025-03-18 Laget: 2025-03-18 Sist oppdatert: 2025-03-18bibliografisk kontrollert
Raman Sundström, M., Ewald, C. O., Lundow, P.-H., Flinth, A., Hultgren, J., Falgas-Ravry, V. & Stokes, K. (2025). Gymnasiearbeten inom matematik. Umeå: Umeå University
Åpne denne publikasjonen i ny fane eller vindu >>Gymnasiearbeten inom matematik
Vise andre…
2025 (svensk)Rapport (Annet (populærvitenskap, debatt, mm))
Alternativ tittel[en]
High school projects in mathematics
sted, utgiver, år, opplag, sider
Umeå: Umeå University, 2025. s. 12
HSV kategori
Forskningsprogram
matematik
Identifikatorer
urn:nbn:se:umu:diva-237928 (URN)
Merknad

Projektideér in framtagna av institutionen för matematik och matematik statistik vid Umeå Universitet. I samarbete med Unga Forskare.

With summaries in English. 

Tilgjengelig fra: 2025-04-23 Laget: 2025-04-23 Sist oppdatert: 2025-04-23bibliografisk kontrollert
Lundqvist, S., Stokes, K. & Öhman, L.-D. (2025). When is a planar rod configuration infinitesimally rigid?. Discrete & Computational Geometry, 73(1), 25-48
Åpne denne publikasjonen i ny fane eller vindu >>When is a planar rod configuration infinitesimally rigid?
2025 (engelsk)Inngår i: Discrete & Computational Geometry, ISSN 0179-5376, E-ISSN 1432-0444, Vol. 73, nr 1, s. 25-48Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We investigate the rigidity properties of rod configurations. Rod configurations are realizations of rank two incidence geometries as points (joints) and straight lines (rods) in the Euclidean plane, such that the lines move as rigid bodies, connected at the points. Note that not all incidence geometries have such realizations. We show that under the assumptions that the rod configuration exists and is sufficiently generic, its infinitesimal rigidity is equivalent to the infinitesimal rigidity of generic frameworks of the graph defined by replacing each rod by a cone over its point set. To put this into context, the molecular conjecture states that the infinitesimal rigidity of rod configurations realizing 2-regular hypergraphs is determined by the rigidity of generic body and hinge frameworks realizing the same hypergraph. This conjecture was proven by Jackson and Jordán in the plane, and by Katoh and Tanigawa in arbitrary dimension. Whiteley proved a version of the molecular conjecture for hypergraphs of arbitrary degree that have realizations as independent body and joint frameworks. Our result extends his result to hypergraphs that do not necessarily have realizations as independent body and joint frameworks, under the assumptions listed above.

sted, utgiver, år, opplag, sider
Springer Nature, 2025
Emneord
Combinatorial rigidity, Hypergraphs, Incidence geometries, Parallel redrawings, Rod configurations
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-218895 (URN)10.1007/s00454-023-00617-7 (DOI)001126462800001 ()2-s2.0-85180169240 (Scopus ID)
Forskningsfinansiär
Knut and Alice Wallenberg Foundation, 2020.0001Knut and Alice Wallenberg Foundation, 2020.0007
Tilgjengelig fra: 2024-01-04 Laget: 2024-01-04 Sist oppdatert: 2025-04-28bibliografisk kontrollert
Leemans, D., Stokes, K. & Tranchida, P. (2024). On trialities and their absolute geometries. Advances in Geometry, 24(4), 449-462
Åpne denne publikasjonen i ny fane eller vindu >>On trialities and their absolute geometries
2024 (engelsk)Inngår i: Advances in Geometry, ISSN 1615-715X, E-ISSN 1615-7168, Vol. 24, nr 4, s. 449-462Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We introduce the notion of moving absolute geometry of a geometry with triality and show that, in the classical case where the triality is of type (Iσ) and the absolute geometry is a generalized hexagon, the moving 5 3 6 absolute geometry also gives interesting flag-transitive geometries with Buekenhout diagram for the groups G2(k) and 3D4(k), for any prime power k ≥ 2. We also classify the absolute geometries for geometries with trialities but no dualities coming from maps of Class III with automorphism group L2(q3), where q ≥ 2 is prime power. We then investigate the moving absolute geometries for these geometries, illustrating their interest in this case.

sted, utgiver, år, opplag, sider
Walter de Gruyter, 2024
Emneord
absolute geometry, Incidence geometry, triality
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-231548 (URN)10.1515/advgeom-2024-0018 (DOI)001339249500002 ()2-s2.0-85207803645 (Scopus ID)
Forskningsfinansiär
Knut and Alice Wallenberg Foundation, KAW2020.0001Knut and Alice Wallenberg Foundation, KAW2020.0007Knut and Alice Wallenberg Foundation, KAW 2020.0282
Tilgjengelig fra: 2024-11-20 Laget: 2024-11-20 Sist oppdatert: 2024-11-20bibliografisk kontrollert
Lundqvist, S., Stokes, K. & Öhman, L.-D. (2023). Applying the pebble game algorithm to rod configurations. In: EuroCG 2023: Book of abstracts. Paper presented at The 39th European workshop on computational geometry (EuroCG 2023), Barcelona, Spain, March 29-31, 2023. , Article ID 41.
Åpne denne publikasjonen i ny fane eller vindu >>Applying the pebble game algorithm to rod configurations
2023 (engelsk)Inngår i: EuroCG 2023: Book of abstracts, 2023, artikkel-id 41Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We present results on rigidity of structures of rigid rods connected in joints: rod configurations. The underlying combinatorial structure of a rod configuration is an incidence structure. Our aim is to find simple ways of determining which rod configurations admit non-trivial motions, using the underlying incidence structure.

Rigidity of graphs in the plane is well understood. Indeed, there is a polynomial time algorithm for deciding whether most realisations of a graph are rigid. One of the results presented here equates rigidity of sufficiently generic rod configurations to rigidity of a related graph. As a consequence, itis possible to determine the rigidity of rod configurations using the previously mentioned polynomial time algorithm. We use this to show that all v3-configurations on up to 15 points and all triangle-free v3-configurations on up to 20 points are rigid in regular position, if such a realisation exists. We also conjecture that the smallest v3-configuration that is flexible in regular position is a previously known 283-configuration. 

HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-215548 (URN)
Konferanse
The 39th European workshop on computational geometry (EuroCG 2023), Barcelona, Spain, March 29-31, 2023
Tilgjengelig fra: 2023-10-22 Laget: 2023-10-22 Sist oppdatert: 2025-04-28bibliografisk kontrollert
Lundqvist, S., Stokes, K. & Öhman, L.-D. (2023). Exploring the rigidity of planar configurations of points and rods. Discrete Applied Mathematics, 336, 68-82
Åpne denne publikasjonen i ny fane eller vindu >>Exploring the rigidity of planar configurations of points and rods
2023 (engelsk)Inngår i: Discrete Applied Mathematics, ISSN 0166-218X, E-ISSN 1872-6771, Vol. 336, s. 68-82Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this article we explore the rigidity of realizations of incidence geometries consisting of points and rigid rods: rod configurations. We survey previous results on the rigidity of structures that are related to rod configurations, discuss how to find realizations of incidence geometries as rod configurations, and how this relates to the 2-plane matroid. We also derive further sufficient conditions for the minimal rigidity of k-uniform rod configurations and give an example of an infinite family of minimally rigid 3-uniform rod configurations failing the same conditions. Finally, we construct v3-configurations that are flexible in the plane, and show that there are flexible v3-configurations for all sufficiently large values of v.

sted, utgiver, år, opplag, sider
Elsevier, 2023
Emneord
Combinatorial rigidity, Incidence geometry, Rod configuration
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-208092 (URN)10.1016/j.dam.2023.03.030 (DOI)000983170400001 ()2-s2.0-85153509834 (Scopus ID)
Forskningsfinansiär
Knut and Alice Wallenberg Foundation, 2020.0001Knut and Alice Wallenberg Foundation, 2020.0007
Tilgjengelig fra: 2023-05-09 Laget: 2023-05-09 Sist oppdatert: 2025-04-28bibliografisk kontrollert
Stokes, K. (2023). Geometric decoding of subspace codes with explicit Schubert calculus applied to spread codes.
Åpne denne publikasjonen i ny fane eller vindu >>Geometric decoding of subspace codes with explicit Schubert calculus applied to spread codes
2023 (engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

This article is about a decoding algorithm for error-correcting subspace codes. A version of this algorithm was previously described by Rosenthal, Silberstein and Trautmann. The decoding algorithm requires the code to be defined as the intersection of the Plücker embedding of the Grassmannian and an algebraic variety. We call such codes \emph{geometric subspace codes}. Complexity is substantially improved compared to the algorithm by Rosenthal, Silberstein and Trautmann and connections to finite geometry are given. The decoding algorithm is applied to Desarguesian spread codes, which are known to be defined as the intersection of the Plücker embedding of the Grassmannian with a linear space.

HSV kategori
Forskningsprogram
matematik
Identifikatorer
urn:nbn:se:umu:diva-215549 (URN)10.48550/arXiv.1610.02022 (DOI)
Tilgjengelig fra: 2023-10-22 Laget: 2023-10-22 Sist oppdatert: 2025-07-09bibliografisk kontrollert
Leemans, D. & Stokes, K. (2023). Incidence geometries with trialities coming from maps with Wilson trialities. Innovations in Incidence Geometry, 20(2-3), 325-340
Åpne denne publikasjonen i ny fane eller vindu >>Incidence geometries with trialities coming from maps with Wilson trialities
2023 (engelsk)Inngår i: Innovations in Incidence Geometry, ISSN 2640-7337, Vol. 20, nr 2-3, s. 325-340Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Triality is a classical notion in geometry that arose in the context of the Lie groups of type D4. Another notion of triality, Wilson triality, appears in the context of reflexible maps. We build a bridge between these two notions, showing how to construct an incidence geometry with a triality from a map that admits a Wilson triality. We also extend a result by Jones and Poulton, showing that for every prime power q, the group L2 (q3) has maps that admit Wilson trialities but no dualities.

sted, utgiver, år, opplag, sider
Mathematical Sciences Publishers, 2023
Emneord
incidence geometry, maps, projective special linear groups, triality
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-214970 (URN)10.2140/iig.2023.20.325 (DOI)2-s2.0-85172363093 (Scopus ID)
Tilgjengelig fra: 2023-10-16 Laget: 2023-10-16 Sist oppdatert: 2024-07-02bibliografisk kontrollert
Forbes, A. D., Griggs, T. S. & Stokes, K. (2022). Existence results for pentagonal geometries. The Australasian Journal of Combinatorics, 82(1), 95-114
Åpne denne publikasjonen i ny fane eller vindu >>Existence results for pentagonal geometries
2022 (engelsk)Inngår i: The Australasian Journal of Combinatorics, ISSN 1034-4942, Vol. 82, nr 1, s. 95-114Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

New results on pentagonal geometries PENT(k, r) with block sizes k = 3 or k = 4 are given. In particular we completely determine the existence spectra for PENT(3, r) systems with the maximum number of opposite line pairs as well as those without any opposite line pairs. A wide-ranging result about PENT(3, r) with any number of opposite line pairs is proved. We also determine the existence spectrum of PENT(4, r) systems with eleven possible exceptions.

sted, utgiver, år, opplag, sider
University of Queensland Press, 2022
HSV kategori
Forskningsprogram
matematik
Identifikatorer
urn:nbn:se:umu:diva-190889 (URN)2-s2.0-85121582191 (Scopus ID)
Tilgjengelig fra: 2021-12-30 Laget: 2021-12-30 Sist oppdatert: 2024-07-02bibliografisk kontrollert
Mc Glue, C. & Stokes, K. (2022). Generating All Rigidity Circuits on at Most 10 Vertices and All Assur Graphs on at Most 11 Vertices. Journal of Integer Sequences, 25(1), Article ID 22.1.3.
Åpne denne publikasjonen i ny fane eller vindu >>Generating All Rigidity Circuits on at Most 10 Vertices and All Assur Graphs on at Most 11 Vertices
2022 (engelsk)Inngår i: Journal of Integer Sequences, E-ISSN 1530-7638, Vol. 25, nr 1, artikkel-id 22.1.3Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We present an inventory and the enumeration of all non-isomorphic rigidity circuits on up to 10 vertices, as well as all non-isomorphic Assur graphs on up to 11 vertices. Assur graphs and Baranov trusses are closely related. We clarify the relation between Baranov trusses and (2, 3)-tight graphs on the one hand, and between Assur groups and Assur graphs on the other hand.

sted, utgiver, år, opplag, sider
University of Waterloo, 2022
Emneord
Assur graph, Rigidity circuit
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-191124 (URN)2-s2.0-85122162316 (Scopus ID)
Forskningsfinansiär
Knut and Alice Wallenberg Foundation, 2020.0001Knut and Alice Wallenberg Foundation, 2020.0007
Tilgjengelig fra: 2022-01-10 Laget: 2022-01-10 Sist oppdatert: 2024-07-02bibliografisk kontrollert
Organisasjoner
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0002-5040-2089