Umeå universitets logga

umu.sePublikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (10 of 138) Visa alla publikationer
Espaillat, A., Alvarez, L., Torrens, G., ter Beek, J., Miguel-Ruano, V., Irazoki, O., . . . Cava, F. (2024). A distinctive family of L,D-transpeptidases catalyzing L-Ala-mDAP crosslinks in Alpha- and Betaproteobacteria. Nature Communications, 15(1), Article ID 1343.
Öppna denna publikation i ny flik eller fönster >>A distinctive family of L,D-transpeptidases catalyzing L-Ala-mDAP crosslinks in Alpha- and Betaproteobacteria
Visa övriga...
2024 (Engelska)Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 15, nr 1, artikel-id 1343Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The bacterial cell-wall peptidoglycan is made of glycan strands crosslinked by short peptide stems. Crosslinks are catalyzed by DD-transpeptidases (4,3-crosslinks) and LD-transpeptidases (3,3-crosslinks). However, recent research on non-model species has revealed novel crosslink types, suggesting the existence of uncharacterized enzymes. Here, we identify an LD-transpeptidase, LDTGo, that generates 1,3-crosslinks in the acetic-acid bacterium Gluconobacter oxydans. LDTGo-like proteins are found in Alpha- and Betaproteobacteria lacking LD3,3-transpeptidases. In contrast with the strict specificity of typical LD- and DD-transpeptidases, LDTGo can use non-terminal amino acid moieties for crosslinking. A high-resolution crystal structure of LDTGo reveals unique features when compared to LD3,3-transpeptidases, including a proline-rich region that appears to limit substrate access, and a cavity accommodating both glycan chain and peptide stem from donor muropeptides. Finally, we show that DD-crosslink turnover is involved in supplying the necessary substrate for LD1,3-transpeptidation. This phenomenon underscores the interplay between distinct crosslinking mechanisms in maintaining cell wall integrity in G. oxydans.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2024
Nationell ämneskategori
Biokemi och molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-221654 (URN)10.1038/s41467-024-45620-5 (DOI)38351082 (PubMedID)2-s2.0-85185130975 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2018- 02823Vetenskapsrådet, 2018-05882Kempestiftelserna, SMK2062Knut och Alice Wallenbergs StiftelseVetenskapsrådet, 2018-07152Vetenskapsrådet, 2016-03599Forskningsrådet Formas, 2019- 02496Kempestiftelserna, SMK-1762Kempestiftelserna, SMK-1869
Tillgänglig från: 2024-03-04 Skapad: 2024-03-04 Senast uppdaterad: 2024-03-04Bibliografiskt granskad
Gilmore, M. C., Yadav, A. K., Espaillat, A., Gust, A. A., Williams, M. A., Brown, P. J. .. & Cava, F. (2024). A peptidoglycan N-deacetylase specific for anhydroMurNAc chain termini in Agrobacterium tumefaciens. Journal of Biological Chemistry, 300(2), Article ID 105611.
Öppna denna publikation i ny flik eller fönster >>A peptidoglycan N-deacetylase specific for anhydroMurNAc chain termini in Agrobacterium tumefaciens
Visa övriga...
2024 (Engelska)Ingår i: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 300, nr 2, artikel-id 105611Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

During growth, bacteria remodel and recycle their peptidoglycan (PG). A key family of PG-degrading enzymes is the lytic transglycosylases, which produce anhydromuropeptides, a modification that caps the PG chains and contributes to bacterial virulence. Previously, it was reported that the polar-growing Gram-negative plant pathogen Agrobacterium tumefaciens lacks anhydromuropeptides. Here, we report the identification of an enzyme, MdaA (MurNAc deacetylase A), which specifically removes the acetyl group from anhydromuropeptide chain termini in A. tumefaciens, resolving this apparent anomaly. A. tumefaciens lacking MdaA accumulates canonical anhydromuropeptides, whereas MdaA was able to deacetylate anhydro-N-acetyl muramic acid in purified sacculi that lack this modification. As for other PG deacetylases, MdaA belongs to the CE4 family of carbohydrate esterases but harbors an unusual Cys residue in its active site. MdaA is conserved in other polar-growing bacteria, suggesting a possible link between PG chain terminus deacetylation and polar growth.

Ort, förlag, år, upplaga, sidor
Elsevier, 2024
Nyckelord
Agrobacterium tumefaciens, anhydromuropeptide, deacetylase, lytic transglycosylase, peptidoglycan
Nationell ämneskategori
Mikrobiologi Mikrobiologi inom det medicinska området
Identifikatorer
urn:nbn:se:umu:diva-220439 (URN)10.1016/j.jbc.2023.105611 (DOI)38159848 (PubMedID)2-s2.0-85183154845 (Scopus ID)
Forskningsfinansiär
VetenskapsrådetKnut och Alice Wallenbergs StiftelseKempestiftelserna
Tillgänglig från: 2024-02-07 Skapad: 2024-02-07 Senast uppdaterad: 2024-03-20Bibliografiskt granskad
Simpson, B. W., Gilmore, M. C., McLean, A. B., Cava, F. & Trent, M. S. (2024). Escherichia coli CadB is capable of promiscuously transporting muropeptides and contributing to peptidoglycan recycling. Journal of Bacteriology, 206(1), Article ID e0036923.
Öppna denna publikation i ny flik eller fönster >>Escherichia coli CadB is capable of promiscuously transporting muropeptides and contributing to peptidoglycan recycling
Visa övriga...
2024 (Engelska)Ingår i: Journal of Bacteriology, ISSN 0021-9193, E-ISSN 1098-5530, Vol. 206, nr 1, artikel-id e0036923Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The bacterial peptidoglycan (PG) cell wall is remodeled during growth and division, releasing fragments called muropeptides. Muropeptides can be internalized and reused in a process called PG recycling. Escherichia coli is highly devoted to recycling muropeptides and is known to have at least two transporters, AmpG and OppBCDF, that import them into the cytoplasm. While studying mutants lacking AmpG, we unintentionally isolated mutations that led to the altered expression of a third transporter, CadB. CadB is normally upregulated under acidic pH conditions and is an antiporter for lysine and cadaverine. Here, we explored if CadB was altering PG recycling to assist in the absence of AmpG. Surprisingly, CadB overexpression was able to restore PG recycling when both AmpG and OppBCDF were absent. CadB was found to import freed PG peptides, a subpopulation of muropeptides, through a promiscuous activity. Altogether, our data support that CadB is a third transporter capable of contributing to PG recycling.

Ort, förlag, år, upplaga, sidor
American Society for Microbiology, 2024
Nyckelord
cell wall, muropeptides, peptidoglycan, peptidoglycan recycling
Nationell ämneskategori
Mikrobiologi
Identifikatorer
urn:nbn:se:umu:diva-220465 (URN)10.1128/jb.00369-23 (DOI)001135641100001 ()38169298 (PubMedID)2-s2.0-85183459411 (Scopus ID)
Forskningsfinansiär
NIH (National Institutes of Health), AI176776NIH (National Institutes of Health), AI138576NIH (National Institutes of Health), AI150098Vetenskapsrådet, VR2018-02823Vetenskapsrådet, VR2018-05882Knut och Alice Wallenbergs Stiftelse, KAW2012.0184Kempestiftelserna
Tillgänglig från: 2024-02-19 Skapad: 2024-02-19 Senast uppdaterad: 2024-02-19Bibliografiskt granskad
Obando, M. A., Rey-Varela, D., Cava, F. & Dörr, T. (2024). Genetic interaction mapping reveals functional relationships between peptidoglycan endopeptidases and carboxypeptidases. PLOS Genetics, 20(4), Article ID e1011234.
Öppna denna publikation i ny flik eller fönster >>Genetic interaction mapping reveals functional relationships between peptidoglycan endopeptidases and carboxypeptidases
2024 (Engelska)Ingår i: PLOS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 20, nr 4, artikel-id e1011234Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Peptidoglycan (PG) is the main component of the bacterial cell wall; it maintains cell shape while protecting the cell from internal osmotic pressure and external environmental challenges. PG synthesis is essential for bacterial growth and survival, and a series of PG modifications are required to allow expansion of the sacculus. Endopeptidases (EPs), for example, cleave the crosslinks between adjacent PG strands to allow the incorporation of newly synthesized PG. EPs are collectively essential for bacterial growth and must likely be carefully regulated to prevent sacculus degradation and cell death. However, EP regulation mechanisms are poorly understood. Here, we used TnSeq to uncover novel EP regulators in Vibrio cholerae. This screen revealed that the carboxypeptidase DacA1 (PBP5) alleviates EP toxicity. dacA1 is essential for viability on LB medium, and this essentiality was suppressed by EP overexpression, revealing that EP toxicity both mitigates, and is mitigated by, a defect in dacA1. A subsequent suppressor screen to restore viability of ΔdacA1 in LB medium identified hypomorphic mutants in the PG synthesis pathway, as well as mutations that promote EP activation. Our data thus reveal a more complex role of DacA1 in maintaining PG homeostasis than previously assumed.

Ort, förlag, år, upplaga, sidor
Public Library of Science (PLoS), 2024
Nationell ämneskategori
Mikrobiologi inom det medicinska området
Identifikatorer
urn:nbn:se:umu:diva-223634 (URN)10.1371/journal.pgen.1011234 (DOI)001202796000002 ()2-s2.0-85190343469 (Scopus ID)
Forskningsfinansiär
VetenskapsrådetNIH (National Institutes of Health), R01GM130971 (Knut och Alice Wallenbergs StiftelseKempestiftelsernaWenner-Gren Stiftelserna
Tillgänglig från: 2024-04-25 Skapad: 2024-04-25 Senast uppdaterad: 2024-04-25Bibliografiskt granskad
Wigren, J., Vikström, L., Rosendal, E., Gröning, R., Gwon, Y.-D., Nilsson, E., . . . Forsell, M. N. E. (2023). At-home sampling to meet geographical challenges for serological assessment of SARS-CoV-2 exposure in a rural region of northern Sweden, March to May 2021: a retrospective cohort study. Eurosurveillance, 28(13), Article ID 2200432.
Öppna denna publikation i ny flik eller fönster >>At-home sampling to meet geographical challenges for serological assessment of SARS-CoV-2 exposure in a rural region of northern Sweden, March to May 2021: a retrospective cohort study
Visa övriga...
2023 (Engelska)Ingår i: Eurosurveillance, ISSN 1025-496X, E-ISSN 1560-7917, Vol. 28, nr 13, artikel-id 2200432Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: The current SARS-CoV-2 pandemic has highlighted a need for easy and safe blood sampling in combination with accurate serological methodology. Venipuncture for testing is usually performed by trained staff at healthcare centres. Long travel distances to healthcare centres in rural regions may introduce a bias of testing towards relatively large communities with closer access. Rural regions are therefore often not represented in population-based data.

Aim: The aim of this retrospective cohort study was to develop and implement a strategy for at-home testing in a rural region of Sweden during spring 2021, and to evaluate its role to provide equal health care for its inhabitants.

Methods: We developed a sensitive method to measure antibodies to the S-protein of SARS-CoV-2 and optimised this assay for clinical use together with a strategy of at-home capillary blood sampling.

Results: We demonstrated that our ELISA gave comparable results after analysis of capillary blood or serum from SARS-CoV-2-experienced individuals. We demonstrated stability of the assay under conditions that reflected temperature and humidity during winter or summer. By assessment of capillary blood samples from 4,122 individuals, we could show both feasibility of the strategy and that implementation shifted the geographical spread of testing in favour of rural areas.

Conclusion: Implementation of at-home sampling enabled citizens living in remote rural areas access to centralised and sensitive laboratory antibody tests. The strategy for testing used here could therefore enable disease control authorities to get rapid access to information concerning immunity to infectious diseases, even across vast geographical distance.

Ort, förlag, år, upplaga, sidor
European Centre for Disease Control and Prevention (ECDC), 2023
Nyckelord
coronavirus disease (COVID-19), laboratory, surveillance, Sweden
Nationell ämneskategori
Infektionsmedicin Mikrobiologi inom det medicinska området
Identifikatorer
urn:nbn:se:umu:diva-206673 (URN)10.2807/1560-7917.ES.2023.28.13.2200432 (DOI)000971868200003 ()36995373 (PubMedID)2-s2.0-85151573640 (Scopus ID)
Tillgänglig från: 2023-04-14 Skapad: 2023-04-14 Senast uppdaterad: 2023-09-05Bibliografiskt granskad
Irazoki, O., ter Beek, J., Alvarez, L., Mateus, A., Colin, R., Typas, A., . . . Cava, F. (2023). D-amino acids signal a stress-dependent run-away response in Vibrio cholerae. Nature Microbiology, 8(8), 1549-1560
Öppna denna publikation i ny flik eller fönster >>D-amino acids signal a stress-dependent run-away response in Vibrio cholerae
Visa övriga...
2023 (Engelska)Ingår i: Nature Microbiology, E-ISSN 2058-5276, Vol. 8, nr 8, s. 1549-1560Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

To explore favourable niches while avoiding threats, many bacteria use a chemotaxis navigation system. Despite decades of studies on chemotaxis, most signals and sensory proteins are still unknown. Many bacterial species release d-amino acids to the environment; however, their function remains largely unrecognized. Here we reveal that d-arginine and d-lysine are chemotactic repellent signals for the cholera pathogen Vibrio cholerae. These d-amino acids are sensed by a single chemoreceptor MCPDRK co-transcribed with the racemase enzyme that synthesizes them under the control of the stress-response sigma factor RpoS. Structural characterization of this chemoreceptor bound to either d-arginine or d-lysine allowed us to pinpoint the residues defining its specificity. Interestingly, the specificity for these d-amino acids appears to be restricted to those MCPDRK orthologues transcriptionally linked to the racemase. Our results suggest that d-amino acids can shape the biodiversity and structure of complex microbial communities under adverse conditions.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2023
Nationell ämneskategori
Mikrobiologi inom det medicinska området Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)
Identifikatorer
urn:nbn:se:umu:diva-211830 (URN)10.1038/s41564-023-01419-6 (DOI)001016462800001 ()37365341 (PubMedID)2-s2.0-85162925641 (Scopus ID)
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, 2012.0184Kempestiftelserna, SMK-1869Vetenskapsrådet, 2018-02823Vetenskapsrådet, 2018-05882Vetenskapsrådet, 2016-03599Deutsche Forschungsgemeinschaft (DFG), CO 1813/2-1
Tillgänglig från: 2023-07-11 Skapad: 2023-07-11 Senast uppdaterad: 2023-09-20Bibliografiskt granskad
Simpson, B. W., Gilmore, M. C., McLean, A. B., Cava, F. & Trent, M. S. (2023). Escherichia coli utilizes multiple peptidoglycan recycling permeases with distinct strategies of recycling. Proceedings of the National Academy of Sciences of the United States of America, 120(44), Article ID e2308940120.
Öppna denna publikation i ny flik eller fönster >>Escherichia coli utilizes multiple peptidoglycan recycling permeases with distinct strategies of recycling
Visa övriga...
2023 (Engelska)Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 120, nr 44, artikel-id e2308940120Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Bacteria produce a structural layer of peptidoglycan (PG) that enforces cell shape, resists turgor pressure, and protects the cell. As bacteria grow and divide, the existing layer of PG is remodeled and PG fragments are released. Enterics such as Escherichia coli go to great lengths to internalize and reutilize PG fragments. E. coli is estimated to break down one-third of its cell wall, yet only loses ~0 to 5% of meso-diaminopimelic acid, a PG-specific amino acid, per generation. Two transporters were identified early on to possibly be the primary permease that facilitates PG fragment recycling, i) AmpG and ii) the Opp ATP binding cassette transporter in conjunction with a PG-specific periplasmic binding protein, MppA. The contribution of each transporter to PG recycling has been debated. Here, we have found that AmpG and MppA/Opp are differentially regulated by carbon source and growth phase. In addition, MppA/Opp is uniquely capable of high-affinity scavenging of muropeptides from growth media, demonstrating that AmpG and MppA/Opp allow for different strategies of recycling PG fragments. Altogether, this work clarifies environmental contexts under which E. coli utilizes distinct permeases for PG recycling and explores how scavenging by MppA/Opp could be beneficial in mixed communities.

Ort, förlag, år, upplaga, sidor
Proceedings of the National Academy of Sciences (PNAS), 2023
Nyckelord
AmpG, cell wall, muropeptides, peptidoglycan, peptidoglycan recycling
Nationell ämneskategori
Mikrobiologi
Identifikatorer
urn:nbn:se:umu:diva-216380 (URN)10.1073/pnas.2308940120 (DOI)001124085100001 ()37871219 (PubMedID)2-s2.0-85175497598 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2018-05882Vetenskapsrådet, 2018-02823Knut och Alice Wallenbergs Stiftelse, KAW2012.0184KempestiftelsernaNIH (National Institutes of Health), AI176776NIH (National Institutes of Health), AI138576NIH (National Institutes of Health), AI150098NIH (National Institutes of Health), F32 GM137554
Tillgänglig från: 2023-11-10 Skapad: 2023-11-10 Senast uppdaterad: 2024-03-20Bibliografiskt granskad
Aurass, P., Kim, S., Pinedo, V., Cava, F. & Isberg, R. R. (2023). Identification of genes required for long-term survival of Legionella Pneumophila in water. mSphere, 8(2), Article ID e0045422.
Öppna denna publikation i ny flik eller fönster >>Identification of genes required for long-term survival of Legionella Pneumophila in water
Visa övriga...
2023 (Engelska)Ingår i: mSphere, E-ISSN 2379-5042, Vol. 8, nr 2, artikel-id e0045422Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Long-term survival of Legionella pneumophila in aquatic environments is thought to be important for facilitating epidemic outbreaks. Eliminating bacterial colonization in plumbing systems is the primary strategy that depletes this reservoir and prevents disease. To uncover L. pneumophila determinants facilitating survival in water, a Tn-seq strategy was used to identify survival-defective mutants during 50-day starvation in tap water at 42°C. The mutants with the most drastic survival defects carried insertions in electron transport chain genes, indicating that membrane energy charge and/or ATP synthesis requires the generation of a proton gradient by the respiratory chain to maintain survival in the presence of water stress. In addition, periplasmically localized proteins that are known (EnhC) or hypothesized (lpg1697) to stabilize the cell wall against turnover were essential for water survival. To test that the identified mutations disrupted water survival, candidate genes were knocked down by CRISPRi. The vast majority of knockdown strains with verified transcript depletion showed remarkably low viability after 50-day incubations. To demonstrate that maintenance of cell wall integrity was an important survival determinant, a deletion mutation in lpg1697, in a gene encoding a predicted l,d-transpeptidase domain, was analyzed. The loss of this gene resulted in increased osmolar sensitivity and carbenicillin hypersensitivity relative to the wild type, as predicted for loss of an l,d-transpeptidase. These results indicate that the L. pneumophila envelope has been evolutionarily selected to allow survival under conditions in which the bacteria are subjected to long-term exposure to starvation and low osmolar conditions. IMPORTANCE Water is the primary vector for transmission of L. pneumophila to humans, and the pathogen is adapted to persist in this environment for extended periods of time. Preventing survival of L. pneumophila in water is therefore critical for prevention of Legionnaires' disease. We analyzed dense transposon mutation pools for strains with severe survival defects during a 50-day water incubation at 42°C. By tracking the associated transposon insertion sites in the genome, we defined a distinct essential gene set for water survival and demonstrate that a predicted peptidoglycan cross-linking enzyme, lpg1697, and components of the electron transport chain are required to ensure survival of the pathogen. Our results indicate that select characteristics of the cell wall and components of the respiratory chain of L. pneumophila are primary evolutionary targets being shaped to promote its survival in water.

Ort, förlag, år, upplaga, sidor
Washington: American Society for Microbiology, 2023
Nyckelord
CRISPRi, Legionella, persistence, starvation, Tn-seq, virulence, water
Nationell ämneskategori
Mikrobiologi inom det medicinska området Mikrobiologi
Identifikatorer
urn:nbn:se:umu:diva-208070 (URN)10.1128/msphere.00454-22 (DOI)000960147700001 ()36988466 (PubMedID)2-s2.0-85153414758 (Scopus ID)
Forskningsfinansiär
KempestiftelsernaKnut och Alice Wallenbergs StiftelseVetenskapsrådet
Tillgänglig från: 2023-05-17 Skapad: 2023-05-17 Senast uppdaterad: 2023-05-17Bibliografiskt granskad
Midonet, C., Bisset, S., Shlosman, I., Cava, F., Rudner, D. Z. & Bernhardt, T. G. (2023). MacP bypass variants of Streptococcus pneumoniae PBP2a suggest a conserved mechanism for the activation of bifunctional cell wall synthases. mBio, 14(6), Article ID e0239023.
Öppna denna publikation i ny flik eller fönster >>MacP bypass variants of Streptococcus pneumoniae PBP2a suggest a conserved mechanism for the activation of bifunctional cell wall synthases
Visa övriga...
2023 (Engelska)Ingår i: mBio, ISSN 2161-2129, E-ISSN 2150-7511, Vol. 14, nr 6, artikel-id e0239023Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The peptidoglycan (PG) layer protects bacteria from osmotic lysis and defines their shape. The class A penicillin-binding proteins (aPBPs) are PG synthases that possess both glycan polymerization and crosslinking activities needed for PG biogenesis. In Gram-negative bacteria, aPBPs require activation by outer membrane lipoproteins, which are thought to stimulate their cognate synthase by inducing conformational changes that promote polymerase function. How aPBPs are controlled in Gram-positive bacteria is less clear. One of the few known regulators is MacP in Streptococcus pneumoniae (Sp). MacP is required for the activity of Sp PBP2a, but its mode of action has been obscure. We therefore selected for PBP2a variants capable of functioning in the absence of MacP. Amino acid substitutions that bypassed the MacP requirement for PBP2a function in vivo also activated its polymerase activity in vitro. Many of these changes mapped to the interface between the transmembrane (TM) helix and polymerase domain in a model PBP2a structure. This region is conformationally flexible in the experimentally determined structures of aPBPs and undergoes a structural transition upon binding the substrate-mimicking drug moenomycin. Our findings suggest that MacP promotes PG polymerization by altering the TM-polymerase domain interface in PBP2a and that this mechanism for aPBP activation may be broadly conserved. Furthermore, Sp cells expressing an activated PBP2a variant displayed heterogeneous shapes, highlighting the importance of proper aPBP regulation in cell morphogenesis.

Importance: Class A penicillin-binding proteins (aPBPs) play critical roles in bacterial cell wall biogenesis. As the targets of penicillin, they are among the most important drug targets in history. Although the biochemical activities of these enzymes have been well studied, little is known about how they are regulated in cells to control when and where peptidoglycan is made. In this report, we isolate variants of the Streptococcus pneumoniae enzyme PBP2a that function in cells without MacP, a partner normally required for its activity. The amino acid substitutions activate the cell wall synthase activity of PBP2a, and their location in a model structure suggests an activation mechanism for this enzyme that is shared with aPBPs from distantly related organisms with distinct activators.

Ort, förlag, år, upplaga, sidor
American Society for Microbiology, 2023
Nyckelord
penicillin-binding proteins, peptidoglycan, cell envelope, cell wall
Nationell ämneskategori
Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci) Mikrobiologi inom det medicinska området
Identifikatorer
urn:nbn:se:umu:diva-218565 (URN)10.1128/mbio.02390-23 (DOI)001085326900001 ()37847021 (PubMedID)2-s2.0-85183091235 (Scopus ID)
Forskningsfinansiär
Knut och Alice Wallenbergs StiftelseKempestiftelsernaVetenskapsrådet
Tillgänglig från: 2024-01-03 Skapad: 2024-01-03 Senast uppdaterad: 2024-02-13Bibliografiskt granskad
Zeden, M. S., Gallagher, L. A., Bueno, E., Nolan, A. C., Ahn, J., Shinde, D., . . . O'Gara, J. P. (2023). Metabolic reprogramming and altered cell envelope characteristics in a pentose phosphate pathway mutant increases MRSA resistance to β-lactam antibiotics. PLoS Pathogens, 19(7), Article ID e1011536.
Öppna denna publikation i ny flik eller fönster >>Metabolic reprogramming and altered cell envelope characteristics in a pentose phosphate pathway mutant increases MRSA resistance to β-lactam antibiotics
Visa övriga...
2023 (Engelska)Ingår i: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 19, nr 7, artikel-id e1011536Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Central metabolic pathways control virulence and antibiotic resistance, and constitute potential targets for antibacterial drugs. In Staphylococcus aureus the role of the pentose phosphate pathway (PPP) remains largely unexplored. Mutation of the 6-phosphogluconolactonase gene pgl, which encodes the only non-essential enzyme in the oxidative phase of the PPP, significantly increased MRSA resistance to β-lactam antibiotics, particularly in chemically defined media with physiologically-relevant concentrations of glucose, and reduced oxacillin (OX)-induced lysis. Expression of the methicillin-resistance penicillin binding protein 2a and peptidoglycan architecture were unaffected. Carbon tracing and metabolomics revealed extensive metabolic reprogramming in the pgl mutant including increased flux to glycolysis, the TCA cycle, and several cell envelope precursors, which was consistent with increased β-lactam resistance. Morphologically, pgl mutant cells were smaller than wild-type with a thicker cell wall and ruffled surface when grown in OX. The pgl mutation reduced resistance to Congo Red, sulfamethoxazole and oxidative stress, and increased resistance to targocil, fosfomycin and vancomycin. Levels of lipoteichoic acids (LTAs) were significantly reduced in pgl, which may limit cell lysis, while the surface charge of pgl cells was significantly more positive. A vraG mutation in pgl reversed the increased OX resistance phenotype, and partially restored wild-type surface charge, but not LTA levels. Mutations in vraF or graRS from the VraFG/GraRS complex that regulates DltABCD-mediated d-alanylation of teichoic acids (which in turn controls β-lactam resistance and surface charge), also restored wild-type OX susceptibility. Collectively these data show that reduced levels of LTAs and OX-induced lysis combined with a VraFG/GraRS-dependent increase in cell surface positive charge are accompanied by significantly increased OX resistance in an MRSA pgl mutant.

Ort, förlag, år, upplaga, sidor
Public Library of Science (PLoS), 2023
Nationell ämneskategori
Mikrobiologi inom det medicinska området
Identifikatorer
urn:nbn:se:umu:diva-212850 (URN)10.1371/journal.ppat.1011536 (DOI)001037086000003 ()37486930 (PubMedID)2-s2.0-85166481432 (Scopus ID)
Forskningsfinansiär
Knut och Alice Wallenbergs StiftelseKempestiftelserna
Tillgänglig från: 2023-08-15 Skapad: 2023-08-15 Senast uppdaterad: 2023-08-15Bibliografiskt granskad
Projekt
Peptidoglykan mångfald och plasticitet hos bakterier [2013-02440_VR]; Umeå universitetDemontering av membranmikrodomäner i Staphylococcus aureus för att tämja antibiotikaresistens hos MRSA [2018-05882_VR]; Umeå universitetVad reglerar cellväggens homeostas hos bakterier? [2018-02823_VR]; Umeå universitet
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-5995-718x

Sök vidare i DiVA

Visa alla publikationer