Umeå universitets logga

umu.sePublikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Alternativa namn
Publikationer (10 of 72) Visa alla publikationer
Wu, Y., Lim, Y.-W., McMahon, K.-A., Martel, N., Rae, J., Lo, H. P., . . . Parton, R. G. (2025). Pro-ferroptotic lipids as key control points for caveola formation and disassembly. Cell Reports, 44(6), Article ID 115789.
Öppna denna publikation i ny flik eller fönster >>Pro-ferroptotic lipids as key control points for caveola formation and disassembly
Visa övriga...
2025 (Engelska)Ingår i: Cell Reports, ISSN 2639-1856, E-ISSN 2211-1247, Vol. 44, nr 6, artikel-id 115789Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Caveolae are specialized plasma membrane domains with a unique lipid composition. Lipid peroxidation has recently been implicated in triggering caveola disassembly, releasing cavin proteins to regulate oxidative-stress-associated cellular processes, particularly ferroptosis. Here, we investigated how specific lipids influence caveola formation and their response to oxidative stress. A targeted screening of pro-ferroptotic enzymes identified ACSL4, a key enzyme in synthesizing polyunsaturated fatty acid (PUFA)-linked phospholipids, and ether phospholipid biosynthesis enzymes as critical regulators of caveola formation. Membrane-incorporated omega-6 PUFAs promoted caveola formation, while their displacement by omega-3 PUFAs or monounsaturated fatty acids disrupted this process. Importantly, oxidation of omega-6 PUFA chains in phosphatidylethanolamine (PE) triggered caveola disassembly during lipid peroxidation, potentially by affecting cavin-membrane interactions. These findings unveil a new model for caveola formation and signaling, linking caveola dynamics to ferroptosis with pro-ferroptotic lipids as essential caveolar components and key control points for caveola disassembly under oxidative stress.

Ort, förlag, år, upplaga, sidor
Elsevier, 2025
Nyckelord
ACSL4, cCaveolae, CP: Cell biology, fFerroptosis, lLipids, MUFA, pPlasmalogens, PUFA
Nationell ämneskategori
Cell- och molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-239822 (URN)10.1016/j.celrep.2025.115789 (DOI)40478736 (PubMedID)2-s2.0-105007064091 (Scopus ID)
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, FP7-2007-201EU, FP7, Sjunde ramprogrammet, 101071784
Tillgänglig från: 2025-06-17 Skapad: 2025-06-17 Senast uppdaterad: 2025-06-17Bibliografiskt granskad
Yau, W.-L., Peters, M. B. A., Rönfeldt, S., Sorin, M. N., Lindquist, R., Pulkkinen, I. A., . . . Lundmark, R. (2025). The ACBD3 protein coordinates ER-Golgi contacts to enable productive TBEV infection. Journal of Virology, 99(5), Article ID e0222424.
Öppna denna publikation i ny flik eller fönster >>The ACBD3 protein coordinates ER-Golgi contacts to enable productive TBEV infection
Visa övriga...
2025 (Engelska)Ingår i: Journal of Virology, ISSN 0022-538X, E-ISSN 1098-5514, Vol. 99, nr 5, artikel-id e0222424Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Flavivirus infection involves extensive remodeling of the endoplasmic reticulum (ER), which is key to both the replication of the viral RNA genome as well as the assembly and release of new virions. However, little is known about how viral proteins and host factors cooperatively facilitate such a vast transformation of the ER, and how this influences the different steps of the viral life cycle. In this study, we screened for host proteins that were enriched in close proximity to the tick-borne encephalitis virus (TBEV) protein NS4B and found that the top candidates were coupled to trafficking between ER exit sites (ERES) and the Golgi. We characterized the role of ACBD3, one of the identified proteins, and showed that it promotes TBEV infection. Depletion of ACBD3 inhibited virus replication and resulted in abnormal transformation of the ER, leading to reduced virion release. ACBD3's proviral mechanism did not involve the recruitment of PI4PK as previously described for enteroviruses. Instead, productive TBEV infection required the full-length ACBD3, which localizes to ER-Golgi contact sites together with NS4B. We propose that NS4B and ACBD3 promote replication by coordinating the transformation of the ER, which is required for RNA replication and particle release. The transformation involves direct coupling to the Golgi which facilitates efficient virion transport.

IMPORTANCE: Flaviviruses like tick-borne encephalitis have significant effects on human health. During flavivirus infection, the viral particles enter the host cells and transform the endoplasmic reticulum (ER), which is a membranous organelle and the main site of cellular protein synthesis. Although this is critical for successful infection, the details of the process are unknown. Here, we found that the viral protein NS4B and the host protein ACBD facilitate this transformation by ensuring that the ER is coupled to the Golgi apparatus, the organelle responsible for transporting material out of the cell. TBEV uses ACBD3 to guarantee that the connection sites between the transformed ER and the Golgi remain functional so that RNA is replicated and the produced viral particles are exported from the cell and can infect further cells. Our work sheds light both on the basic biology of flavivirus infection, and virus-induced remodeling of membranous organelles.

Ort, förlag, år, upplaga, sidor
American Society for Microbiology, 2025
Nyckelord
ACBD3, ER exit sites, ERES-Golgi contact, flavivirus, host-pathogen interaction, NS4B, Orthoflavivirus, replication organelles
Nationell ämneskategori
Mikrobiologi inom det medicinska området
Identifikatorer
urn:nbn:se:umu:diva-239429 (URN)10.1128/jvi.02224-24 (DOI)001462874300001 ()40207930 (PubMedID)2-s2.0-105005966672 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2021-05117Vetenskapsrådet, 2018-05851Vetenskapsrådet, 2018-05851Vetenskapsrådet, 2020-06224
Tillgänglig från: 2025-06-02 Skapad: 2025-06-02 Senast uppdaterad: 2025-06-02Bibliografiskt granskad
Parton, R. G., Taraska, J. W. & Lundmark, R. (2024). Is endocytosis by caveolae dependent on dynamin? [Letter to the editor]. Nature reviews. Molecular cell biology, 25(7), 511-512
Öppna denna publikation i ny flik eller fönster >>Is endocytosis by caveolae dependent on dynamin?
2024 (Engelska)Ingår i: Nature reviews. Molecular cell biology, ISSN 1471-0072, E-ISSN 1471-0080, Vol. 25, nr 7, s. 511-512Artikel i tidskrift, Letter (Refereegranskat) Published
Abstract [en]

The large GTPase dynamin has a crucial role in endocytosis, working at the neck of clathrin-coated pits to drive vesicular scission. Until recently, dynamin was believed to regulate endocytosis through caveolae in a similar fashion. However, recent work calls for a serious reassessment of the role of dynamin in endocytosis by caveolae.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2024
Nationell ämneskategori
Cell- och molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-224100 (URN)10.1038/s41580-024-00735-x (DOI)001206128500001 ()38649754 (PubMedID)2-s2.0-85191060335 (Scopus ID)
Tillgänglig från: 2024-05-15 Skapad: 2024-05-15 Senast uppdaterad: 2025-03-03Bibliografiskt granskad
Lundmark, R., Larsson, E. & Pulkkinen, I. A. (2024). The adaptable caveola coat generates a plasma membrane sensory system. Current Opinion in Cell Biology, 88, Article ID 102371.
Öppna denna publikation i ny flik eller fönster >>The adaptable caveola coat generates a plasma membrane sensory system
2024 (Engelska)Ingår i: Current Opinion in Cell Biology, ISSN 0955-0674, E-ISSN 1879-0410, Vol. 88, artikel-id 102371Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

Caveolae are atypical plasma membrane invaginations that take part in lipid sorting and regulation of oxidative and mechanical plasma membrane stress. Caveola formation requires caveolin, cavin, and specific lipid types. The recent advances in understanding the structure and assembly of caveolin and cavin complexes within the membrane context have clarified the fundamental processes underlying caveola biogenesis. In addition, the curvature of the caveola membrane is controlled by the regulatory proteins EHD2, pacsin2, and dynamin2, which also function to restrain the scission of caveolae from the plasma membrane (PM). Here, this is integrated with novel insights on caveolae as lipid and mechanosensing complexes that can dynamically flatten or disassemble to counteract mechanical, and oxidative stress.

Ort, förlag, år, upplaga, sidor
Elsevier, 2024
Nationell ämneskategori
Biokemi Molekylärbiologi Cell- och molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-225334 (URN)10.1016/j.ceb.2024.102371 (DOI)001244302600001 ()2-s2.0-85193818404 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2021-05117Cancerfonden, 23 3004 Pj 01H
Tillgänglig från: 2024-05-31 Skapad: 2024-05-31 Senast uppdaterad: 2025-04-24Bibliografiskt granskad
Larsson, E., Morén, B., McMahon, K.-A., Parton, R. G. & Lundmark, R. (2023). Dynamin2 functions as an accessory protein to reduce the rate of caveola internalization. Journal of Cell Biology, 222(4), Article ID e202205122.
Öppna denna publikation i ny flik eller fönster >>Dynamin2 functions as an accessory protein to reduce the rate of caveola internalization
Visa övriga...
2023 (Engelska)Ingår i: Journal of Cell Biology, ISSN 0021-9525, E-ISSN 1540-8140, Vol. 222, nr 4, artikel-id e202205122Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Caveolae are small membrane invaginations that generally are stably attached to the plasma membrane. Their release is believed to depend on the GTPase dynamin 2 (Dyn2), in analogy with its role in fission of clathrin-coated vesicles. The mechanistic understanding of caveola fission is, however, sparse. Here, we used microscopy-based tracking of individual caveolae in living cells to determine the role of Dyn2 in caveola dynamics. We report that Dyn2 stably associated with the bulb of a subset of caveolae, but was not required for formation or fission of caveolae. Dyn2-positive caveolae displayed longer plasma membrane duration times, whereas depletion of Dyn2 resulted in shorter duration times and increased caveola fission. The stabilizing role of Dyn2 was independent of its GTPase activity and the caveola stabilizing protein EHD2. Thus, we propose that, in contrast to the current view, Dyn2 is not a core component of the caveolae machinery, but rather functions as an accessory protein that restrains caveola internalization.

Ort, förlag, år, upplaga, sidor
Rockefeller University Press, 2023
Nationell ämneskategori
Biokemi Molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-208218 (URN)10.1083/jcb.202205122 (DOI)000978090900001 ()36729022 (PubMedID)2-s2.0-85153874757 (Scopus ID)
Forskningsfinansiär
Cancerfonden, CAN 2017/735Vetenskapsrådet, 2017-04028Vetenskapsrådet, 2021-05117Cancerfonden, 20 1230 PjFUmeå universitet
Tillgänglig från: 2023-05-12 Skapad: 2023-05-12 Senast uppdaterad: 2025-03-03Bibliografiskt granskad
Pulkkinen, L. I., Barrass, S. V., Lindgren, M., Pace, H., Överby, A. K., Anastasina, M., . . . Butcher, S. J. (2023). Simultaneous membrane and RNA binding by tick-borne encephalitis virus capsid protein. PLoS Pathogens, 19(2), Article ID e1011125.
Öppna denna publikation i ny flik eller fönster >>Simultaneous membrane and RNA binding by tick-borne encephalitis virus capsid protein
Visa övriga...
2023 (Engelska)Ingår i: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 19, nr 2, artikel-id e1011125Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Tick-borne encephalitis virus is an enveloped, pathogenic, RNA virus in the family Flaviviridae, genus Flavivirus. Viral particles are formed when the nucleocapsid, consisting of an RNA genome and multiple copies of the capsid protein, buds through the endoplasmic reticulum membrane and acquires the viral envelope and the associated proteins. The coordination of the nucleocapsid components to the sites of assembly and budding are poorly understood. Here, we investigate the interactions of the wild-type and truncated capsid proteins with membranes with biophysical methods and model membrane systems. We show that capsid protein initially binds membranes via electrostatic interactions with negatively-charged lipids, which is followed by membrane insertion. Additionally, we show that membrane-bound capsid protein can recruit viral genomic RNA. We confirm the biological relevance of the biophysical findings by using mass spectrometry to show that purified virions contain negatively-charged lipids. Our results suggest that nucleocapsid assembly is coordinated by negatively-charged membrane patches on the endoplasmic reticulum and that the capsid protein mediates direct contacts between the nucleocapsid and the membrane.

Ort, förlag, år, upplaga, sidor
Public Library of Science, 2023
Nationell ämneskategori
Mikrobiologi inom det medicinska området
Identifikatorer
urn:nbn:se:umu:diva-205497 (URN)10.1371/journal.ppat.1011125 (DOI)000966733300001 ()36787339 (PubMedID)2-s2.0-85149054055 (Scopus ID)
Tillgänglig från: 2023-03-14 Skapad: 2023-03-14 Senast uppdaterad: 2025-03-03Bibliografiskt granskad
Hubert, M., Larsson, E., Liu, K. C. & Lundmark, R. (2022). Caveolae biogenesis and lipid sorting at the plasma membrane. In: Shiro Suetsugu (Ed.), Plasma membrane shaping: (pp. 219-228). Academic Press
Öppna denna publikation i ny flik eller fönster >>Caveolae biogenesis and lipid sorting at the plasma membrane
2022 (Engelska)Ingår i: Plasma membrane shaping / [ed] Shiro Suetsugu, Academic Press, 2022, s. 219-228Kapitel i bok, del av antologi (Refereegranskat)
Abstract [en]

The plasma membrane of many cell types, in particular, endothelia, smooth muscle cells, and adipocytes, contains numerous small invaginations termed caveolae. In nonmuscle cells, caveolae are formed by lipid-driven assembly of the integral membrane protein caveolin 1 (Cav1) and the peripherally attached protein cavin1. Accessory proteins such as Eps15 homology domain-containing 2 (EHD2) control the cell surface association of caveolae, together providing a unique invaginated membrane structure with distinct dynamics and protein and lipid compositions. These features enable caveolae to survey the plasma membrane integrity and to adjust membrane tension, and sort lipids according to the cellular requirements. Currently, characteristics of the protein and lipid interface of caveola are being unraveled, and this chapter is focused on the present knowledge of caveolae biogenesis and dynamics and describes methods that are being used to study the role of caveolae in lipid flux and lipid composition at the cell surface.

Ort, förlag, år, upplaga, sidor
Academic Press, 2022
Nyckelord
Caveolae, caveolin, cavin, cholesterol, dynamics, EHD2, fission, glycosphingolipids, lipids, scission
Nationell ämneskategori
Cell- och molekylärbiologi Biokemi Molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-201754 (URN)10.1016/B978-0-323-89911-6.00017-0 (DOI)2-s2.0-85143309516 (Scopus ID)9780323899116 (ISBN)9780323899192 (ISBN)
Tillgänglig från: 2022-12-30 Skapad: 2022-12-30 Senast uppdaterad: 2025-03-03Bibliografiskt granskad
Fryklund, C., Neuhaus, M., Morén, B., Borreguero-Muñoz, A., Lundmark, R. & Stenkula, K. G. (2022). Expansion of the Inguinal Adipose Tissue Depot Correlates With Systemic Insulin Resistance in C57BL/6J Mice. Frontiers in Cell and Developmental Biology, 10, Article ID 942374.
Öppna denna publikation i ny flik eller fönster >>Expansion of the Inguinal Adipose Tissue Depot Correlates With Systemic Insulin Resistance in C57BL/6J Mice
Visa övriga...
2022 (Engelska)Ingår i: Frontiers in Cell and Developmental Biology, E-ISSN 2296-634X, Vol. 10, artikel-id 942374Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

To accommodate surplus energy, the adipose tissue expands by increasing adipocyte size (hypertrophy) and number (hyperplasia). The presence of hypertrophic adipocytes is a key characteristic of adipose tissue dysfunction. High-fat diet (HFD) fed C57BL/6J mice are a commonly used model to study obesity and obesity-related complications. In the present study, we have characterized adipose plasticity, at both the cellular and tissue level, by examining the temporal development of systemic insulin resistance and adiposity in response to HFD-feeding for 4, 8, and 12 weeks (4w, 8w, and 12w). Within the same time frame, we examined systemic metabolic flexibility and adipose plasticity when switching from HFD- to chow-diet during the last 2 weeks of diet intervention (referred to as the reverse (REV) group: 4wREV (2w HFD+2w chow), 8wREV (6w HFD+2w chow), 12wREV (10w HFD+2w chow)). In response to HFD-feeding over time, the 12w group had impaired systemic insulin sensitivity compared to both the 4w and 8w groups, accompanied by an increase in hypertrophic inguinal adipocytes and liver triglycerides. After reversing from HFD- to chow-feeding, most parameters were completely restored to chow control levels for 4wREV and 8wREV groups. In contrast, the 12wREV group had a significantly increased number of hypertrophic adipocytes, liver triglycerides accumulation, and impaired systemic insulin sensitivity compared to chow-fed mice. Further, image analysis at the single-cell level revealed a cell-size dependent organization of actin filaments for all feeding conditions. Indeed, the impaired adipocyte size plasticity in the 12wREV group was accompanied by increased actin filamentation and reduced insulin-stimulated glucose uptake compared with chow-fed mice. In summary, these results demonstrate that the C57BL/6J HFD-feeding model has a large capacity to restore adipocyte cell size and systemic insulin sensitivity, and that a metabolic tipping point occurs between 8 and 12w of HFD-feeding where this plasticity deteriorates. We believe these findings provide substantial understanding of C57BL/6J mice as an obesity model, and that an increased pool of hypertrophic ING adipocytes could contribute to aggravated insulin resistance.

Ort, förlag, år, upplaga, sidor
Frontiers Media S.A., 2022
Nyckelord
adipocytes, cell size, cytoskeleton, glucose transport, insulin, obesity
Nationell ämneskategori
Endokrinologi och diabetes
Identifikatorer
urn:nbn:se:umu:diva-199895 (URN)10.3389/fcell.2022.942374 (DOI)000855945600001 ()36158197 (PubMedID)2-s2.0-85138356642 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2019-00978Stiftelsen för strategisk forskning (SSF), IRC15-0067Novo Nordisk, NNF20OC0063659DiabetesfondenCrafoordska stiftelsen
Tillgänglig från: 2022-10-03 Skapad: 2022-10-03 Senast uppdaterad: 2025-03-03Bibliografiskt granskad
Liu, K.-C., Pace, H., Larsson, E., Hossain, S., Kabedev, A., Shukla, A., . . . Lundmark, R. (2022). Membrane insertion mechanism of the caveola coat protein Cavin1. Proceedings of the National Academy of Sciences of the United States of America, 119(25), Article ID 2202295119.
Öppna denna publikation i ny flik eller fönster >>Membrane insertion mechanism of the caveola coat protein Cavin1
Visa övriga...
2022 (Engelska)Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 119, nr 25, artikel-id 2202295119Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Caveolae are small plasma membrane invaginations, important for control of membrane tension, signaling cascades, and lipid sorting. The caveola coat protein Cavin1 is essential for shaping such high curvature membrane structures. Yet, a mechanistic understanding of how Cavin1 assembles at the membrane interface is lacking. Here, we used model membranes combined with biophysical dissection and computational modeling to show that Cavin1 inserts into membranes. We establish that initial phosphatidylinositol (4, 5) bisphosphate [PI(4,5)P2]-dependent membrane adsorption of the trimeric helical region 1 (HR1) of Cavin1 mediates the subsequent partial separation and membrane insertion of the individual helices. Insertion kinetics of HR1 is further enhanced by the presence of flanking negatively charged disordered regions, which was found important for the coassembly of Cavin1 with Caveolin1 in living cells. We propose that this intricate mechanism potentiates membrane curvature generation and facilitates dynamic rounds of assembly and disassembly of Cavin1 at the membrane.

Ort, förlag, år, upplaga, sidor
Proceedings of the National Academy of Sciences, 2022
Nyckelord
caveolae, Cavin1, membrane curvature, membrane-shaping protein, protein-lipid interactions
Nationell ämneskategori
Biokemi Molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-203198 (URN)10.1073/pnas.2202295119 (DOI)000838706900008 ()2-s2.0-85133725056 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2018-05973Europeiska kommissionenKempestiftelsernaCancerfondenWallenbergstiftelserna
Tillgänglig från: 2023-01-18 Skapad: 2023-01-18 Senast uppdaterad: 2025-03-03Bibliografiskt granskad
Wang, T., Sarwar, M., Whitchurch, J. B., Collins, H. M., Green, T., Semenas, J., . . . Persson, J. L. (2022). PIP5K1α is Required for Promoting Tumor Progression in Castration-Resistant Prostate Cancer. Frontiers in Cell and Developmental Biology, 10, Article ID 798590.
Öppna denna publikation i ny flik eller fönster >>PIP5K1α is Required for Promoting Tumor Progression in Castration-Resistant Prostate Cancer
Visa övriga...
2022 (Engelska)Ingår i: Frontiers in Cell and Developmental Biology, E-ISSN 2296-634X, Vol. 10, artikel-id 798590Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

PIP5K1α has emerged as a promising drug target for the treatment of castration-resistant prostate cancer (CRPC), as it acts upstream of the PI3K/AKT signaling pathway to promote prostate cancer (PCa) growth, survival and invasion. However, little is known of the molecular actions of PIP5K1α in this process. Here, we show that siRNA-mediated knockdown of PIP5K1α and blockade of PIP5K1α action using its small molecule inhibitor ISA-2011B suppress growth and invasion of CRPC cells. We demonstrate that targeted deletion of the N-terminal domain of PIP5K1α in CRPC cells results in reduced growth and migratory ability of cancer cells. Further, the xenograft tumors lacking the N-terminal domain of PIP5K1α exhibited reduced tumor growth and aggressiveness in xenograft mice as compared to that of controls. The N-terminal domain of PIP5K1α is required for regulation of mRNA expression and protein stability of PIP5K1α. This suggests that the expression and oncogenic activity of PIP5K1α are in part dependent on its N-terminal domain. We further show that PIP5K1α acts as an upstream regulator of the androgen receptor (AR) and AR target genes including CDK1 and MMP9 that are key factors promoting growth, survival and invasion of PCa cells. ISA-2011B exhibited a significant inhibitory effect on AR target genes including CDK1 and MMP9 in CRPC cells with wild-type PIP5K1α and in CRPC cells lacking the N-terminal domain of PIP5K1α. These results indicate that the growth of PIP5K1α-dependent tumors is in part dependent on the integrity of the N-terminal sequence of this kinase. Our study identifies a novel functional mechanism involving PIP5K1α, confirming that PIP5K1α is an intriguing target for cancer treatment, especially for treatment of CRPC.

Ort, förlag, år, upplaga, sidor
Frontiers Media S.A., 2022
Nyckelord
androgen receptor (AR), castration-resistant prostate cancer (CRPC), cyclin-dependent kinase (CDK), matrix metalloproteinases 9 (MMP9) PIP5K1α, phosphatidylinositol 4-phosphate 5 kinase (PIP5K1α), targeted therapy
Nationell ämneskategori
Cancer och onkologi
Forskningsämne
onkologi
Identifikatorer
urn:nbn:se:umu:diva-193614 (URN)10.3389/fcell.2022.798590 (DOI)000780059400001 ()35386201 (PubMedID)2-s2.0-85128078251 (Scopus ID)
Forskningsfinansiär
EU, Horisont 2020, 721297Barncancerfonden, TJ2015-0097Cancerfonden, CAN-2017-381Vetenskapsrådet, 2019-01318Stiftelsen för internationalisering av högre utbildning och forskning (STINT), IG2013-5595KempestiftelsernaCancerforskningsfonden i Norrland
Tillgänglig från: 2022-04-07 Skapad: 2022-04-07 Senast uppdaterad: 2025-03-03Bibliografiskt granskad
Projekt
Specifika system för endocytos och deras betydelse för celladhesion [2008-03617_VR]; Umeå universitetSpecifika system för endocytos och deras betydelse för celladhesion [2008-03740_VR]; Umeå universitetEndocytos och dess inverkan på infection och cellulära processer [2012-02692_VR]; Umeå universitetMolekylära mekanismer för bildandet av stabila membranvesiklar i celler [2017-04028_VR]; Umeå universitet
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-9104-724X

Sök vidare i DiVA

Visa alla publikationer