Umeå universitets logga

umu.sePublikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (10 of 11) Visa alla publikationer
Das, R. N. & Chorell, E. (2025). Design, synthesis, and biophysical characterization of pyridine bis-quinazoline derivatives as selective G-quadruplex DNA stabilizers. Chemistry - A European Journal, 31(21), Article ID e202404689.
Öppna denna publikation i ny flik eller fönster >>Design, synthesis, and biophysical characterization of pyridine bis-quinazoline derivatives as selective G-quadruplex DNA stabilizers
2025 (Engelska)Ingår i: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 31, nr 21, artikel-id e202404689Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Non-canonical G-quadruplex (G4) DNA structures play key roles in cellular regulation and are promising targets for cancer therapy. This study reports the design, synthesis, and biophysical evaluation of 15 novel pyridine bis-quinazoline derivatives for their ability to selectively bind and stabilize G4 DNA structures. The pyridine-bis-quinazoline central fragment was synthesized with various amine side chains via a 4–5 step sequence in high yields. Comprehensive analyses using different fluorescence resonance energy transfer (FRET) assays, fluorescence intercalator displacement (FID), circular dichroism (CD), and nuclear magnetic resonance (NMR) assays revealed strong G4 stabilization and selectivity over double-stranded DNA. The presence and composition of the aliphatic amine side chain proved critical and propylamine linkers exhibited superior performance, achieving ΔTm values exceeding 20 °C and dissociation constants in the nanomolar range. Structural preferences were observed for parallel and hybrid G4 topologies, and the ligands induced minimal conformational changes in G4 DNA upon binding. Finally, cell viability assays on HCT-8 and HepG2 cancer cell lines revealed that most ligands effectively entered the cells and decreased cancer cell viability in a dose-dependent manner. These findings underline the potential of pyridine bis-quinazoline derivatives as selective G4-stabilizing agents, paving the way for further exploration in anticancer drug development.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2025
Nyckelord
Bis-Quinazoline, G-quadruplex DNA, G4-ligand, NMR, Selectivity
Nationell ämneskategori
Organisk kemi Biofysik
Identifikatorer
urn:nbn:se:umu:diva-236689 (URN)10.1002/chem.202404689 (DOI)001437145300001 ()39989204 (PubMedID)2-s2.0-105002269941 (Scopus ID)
Forskningsfinansiär
Kempestiftelserna, SMK-1632Vetenskapsrådet, VR-NT 2017–05235Wenner-Gren StiftelsernaCancerforskningsfonden i Norrland, AMP 19–968
Tillgänglig från: 2025-03-21 Skapad: 2025-03-21 Senast uppdaterad: 2025-05-26Bibliografiskt granskad
Elango, H., Das, R. N. & saha, A. (2024). Benzimidazole-based small molecules as anticancer agents targeting telomeric G-quadruplex and inhibiting telomerase enzyme. Future Medicinal Chemistry, 16(19), 2043-2067
Öppna denna publikation i ny flik eller fönster >>Benzimidazole-based small molecules as anticancer agents targeting telomeric G-quadruplex and inhibiting telomerase enzyme
2024 (Engelska)Ingår i: Future Medicinal Chemistry, ISSN 1756-8919, E-ISSN 1756-8927, Vol. 16, nr 19, s. 2043-2067Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

Telomeres, crucial for chromosomal integrity, have been related to aging and cancer formation, mainly through regulating G-quadruplex structures. G-quadruplexes are structural motifs that can arise as secondary structures of nucleic acids, especially in guanine-rich DNA and RNA regions. Targeting these structures by small compounds shows promise in the selective suppression of cell growth, opening up novel possibilities for anticancer treatment. A comprehensive investigation of the many structural forms of G-quadruplex ligands is required to create ground-breaking anticancer drugs. Recent research into using specific benzimidazole molecules in stabilizing telomeric DNA into G-quadruplex structures has highlighted their ability to influence oncogene expression and demonstrate antiproliferative characteristics against cancer cells. This review describes the benzimidazole derivative, designed to enhance the stability of the G-quadruplex structure DNA to suppress the activity of telomerase enzyme, exhibiting promising potential for anticancer therapy.

Ort, förlag, år, upplaga, sidor
Taylor & Francis, 2024
Nyckelord
Anticancer agent, DNA G-quadruplex, Ligand/small molecule interaction, Telomerase
Nationell ämneskategori
Strukturbiologi
Identifikatorer
urn:nbn:se:umu:diva-230131 (URN)10.1080/17568919.2024.2400982 (DOI)001319152700001 ()39316718 (PubMedID)2-s2.0-85204769326 (Scopus ID)
Tillgänglig från: 2024-09-30 Skapad: 2024-09-30 Senast uppdaterad: 2024-10-23Bibliografiskt granskad
Berner, A., Das, R. N., Bhuma, N., Golebiewska, J., Abrahamsson, A., Andréasson, M., . . . Chorell, E. (2024). G4-ligand-conjugated oligonucleotides mediate selective binding and stabilization of individual G4 DNA structures. Journal of the American Chemical Society, 146(10), 6926-6935
Öppna denna publikation i ny flik eller fönster >>G4-ligand-conjugated oligonucleotides mediate selective binding and stabilization of individual G4 DNA structures
Visa övriga...
2024 (Engelska)Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 146, nr 10, s. 6926-6935Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

G-quadruplex (G4) DNA structures are prevalent secondary DNA structures implicated in fundamental cellular functions, such as replication and transcription. Furthermore, G4 structures are directly correlated to human diseases such as cancer and have been highlighted as promising therapeutic targets for their ability to regulate disease-causing genes, e.g., oncogenes. Small molecules that bind and stabilize these structures are thus valuable from a therapeutic perspective and helpful in studying the biological functions of the G4 structures. However, there are hundreds of thousands of G4 DNA motifs in the human genome, and a long-standing problem in the field is how to achieve specificity among these different G4 structures. Here, we developed a strategy to selectively target an individual G4 DNA structure. The strategy is based on a ligand that binds and stabilizes G4s without selectivity, conjugated to a guide oligonucleotide, that specifically directs the G4-Ligand-conjugated oligo (GL-O) to the single target G4 structure. By employing various biophysical and biochemical techniques, we show that the developed method enables the targeting of a unique, specific G4 structure without impacting other off-target G4 formations. Considering the vast amount of G4s in the human genome, this represents a promising strategy to study the presence and functions of individual G4s but may also hold potential as a future therapeutic modality.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2024
Nationell ämneskategori
Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)
Identifikatorer
urn:nbn:se:umu:diva-222294 (URN)10.1021/jacs.3c14408 (DOI)001179314400001 ()38430200 (PubMedID)2-s2.0-85186374110 (Scopus ID)
Forskningsfinansiär
Kempestiftelserna, JCK-3159Kempestiftelserna, SMK-1632Kempestiftelserna, SMK21-0059Vetenskapsrådet, 2017-05235Vetenskapsrådet, 2021-04805Vetenskapsrådet, 2018-0278Cancerforskningsfonden i Norrland, AMP19-968Knut och Alice Wallenbergs Stiftelse, SMK21-0059
Tillgänglig från: 2024-03-20 Skapad: 2024-03-20 Senast uppdaterad: 2025-04-07Bibliografiskt granskad
Doimo, M., Chaudhari, N., Abrahamsson, S., L'Hôte, V., Nguyen, T. V. H., Berner, A., . . . Wanrooij, S. (2023). Enhanced mitochondrial G-quadruplex formation impedes replication fork progression leading to mtDNA loss in human cells. Nucleic Acids Research, 51(14), 7392-7408
Öppna denna publikation i ny flik eller fönster >>Enhanced mitochondrial G-quadruplex formation impedes replication fork progression leading to mtDNA loss in human cells
Visa övriga...
2023 (Engelska)Ingår i: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 51, nr 14, s. 7392-7408Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Mitochondrial DNA (mtDNA) replication stalling is considered an initial step in the formation of mtDNA deletions that associate with genetic inherited disorders and aging. However, the molecular details of how stalled replication forks lead to mtDNA deletions accumulation are still unclear. Mitochondrial DNA deletion breakpoints preferentially occur at sequence motifs predicted to form G-quadruplexes (G4s), four-stranded nucleic acid structures that can fold in guanine-rich regions. Whether mtDNA G4s form in vivo and their potential implication for mtDNA instability is still under debate. In here, we developed new tools to map G4s in the mtDNA of living cells. We engineered a G4-binding protein targeted to the mitochondrial matrix of a human cell line and established the mtG4-ChIP method, enabling the determination of mtDNA G4s under different cellular conditions. Our results are indicative of transient mtDNA G4 formation in human cells. We demonstrate that mtDNA-specific replication stalling increases formation of G4s, particularly in the major arc. Moreover, elevated levels of G4 block the progression of the mtDNA replication fork and cause mtDNA loss. We conclude that stalling of the mtDNA replisome enhances mtDNA G4 occurrence, and that G4s not resolved in a timely manner can have a negative impact on mtDNA integrity.

Ort, förlag, år, upplaga, sidor
Oxford University Press, 2023
Nationell ämneskategori
Cell- och molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-214069 (URN)10.1093/nar/gkad535 (DOI)001030190900001 ()37351621 (PubMedID)2-s2.0-85168980694 (Scopus ID)
Forskningsfinansiär
Knut och Alice Wallenbergs StiftelseVetenskapsrådet, VR-MH 2018-0278Vetenskapsrådet, VR-NT 2017-05235Kempestiftelserna, SMK-1632Wenner-Gren StiftelsernaEU, Horisont 2020, 751474Stiftelsen för strategisk forskning (SSF), RIF14-0081
Tillgänglig från: 2023-09-05 Skapad: 2023-09-05 Senast uppdaterad: 2025-04-07Bibliografiskt granskad
Bhuma, N., Chand, K., Andréasson, M., Mason, J. E., Das, R. N., Patel, A. K., . . . Chorell, E. (2023). The effect of side chain variations on quinazoline-pyrimidine G-quadruplex DNA ligands. European Journal of Medicinal Chemistry, 248, Article ID 115103.
Öppna denna publikation i ny flik eller fönster >>The effect of side chain variations on quinazoline-pyrimidine G-quadruplex DNA ligands
Visa övriga...
2023 (Engelska)Ingår i: European Journal of Medicinal Chemistry, ISSN 0223-5234, E-ISSN 1768-3254, Vol. 248, artikel-id 115103Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

G-quadruplex (G4) DNA structures are involved in central biological processes such as DNA replication and transcription. These DNA structures are enriched in promotor regions of oncogenes and are thus promising as novel gene silencing therapeutic targets that can be used to regulate expression of oncoproteins and in particular those that has proven hard to drug with conventional strategies. G4 DNA structures in general have a well-defined and hydrophobic binding area that also is very flat and featureless and there are ample examples of G4 ligands but their further progression towards drug development is limited. In this study, we use synthetic organic chemistry to equip a drug-like and low molecular weight central fragment with different side chains and evaluate how this affect the compound's selectivity and ability to bind and stabilize G4 DNA. Furthermore, we study the binding interactions of the compounds and connect the experimental observations with the compound's structural conformations and electrostatic potentials to understand the basis for the observed improvements. Finally, we evaluate the top candidates' ability to selectively reduce cancer cell growth in a 3D co-culture model of pancreatic cancer which show that this is a powerful approach to generate highly active and selective low molecular weight G4 ligands with a promising therapeutic window.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nationell ämneskategori
Läkemedelskemi
Identifikatorer
urn:nbn:se:umu:diva-202112 (URN)10.1016/j.ejmech.2023.115103 (DOI)000922160800001 ()2-s2.0-85146280645 (Scopus ID)
Forskningsfinansiär
Kempestiftelserna, SMK-1632Vetenskapsrådet, 2017–05235Vetenskapsrådet, 2017- 01531Sveriges läkarförbund, SLS-890521Region Västerbotten, RV-930167Knut och Alice Wallenbergs StiftelseMarianne och Marcus Wallenbergs Stiftelse, 2020.0189Cancerfonden, 20 1339 PjFCancerforskningsfonden i Norrland, LP 21–2298Cancerforskningsfonden i Norrland, LP 22–2332
Anmärkning

Originally included in thesis in manuscript form.

Tillgänglig från: 2023-01-02 Skapad: 2023-01-02 Senast uppdaterad: 2023-09-05Bibliografiskt granskad
Deiana, M., Chand, K., Jamroskovic, J., Das, R. N., Obi, I., Chorell, E. & Sabouri, N. (2020). A Site-Specific Self-Assembled Light-up Rotor Probe for Selective Recognition and Stabilization of c-MYC G-Quadruplex DNA. Nanoscale, 12(24), 12950-12957
Öppna denna publikation i ny flik eller fönster >>A Site-Specific Self-Assembled Light-up Rotor Probe for Selective Recognition and Stabilization of c-MYC G-Quadruplex DNA
Visa övriga...
2020 (Engelska)Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 12, nr 24, s. 12950-12957Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Direct and unambiguous evidence of the formation of G-quadruplexes (G4s) in human cells have shown their implication in several key biological events and has emphasized their role as important targets for small-molecule cancer therapeutics. Here, we report on the first example of a self-assembled multitasking molecular-rotor G4-binder able to discriminate between an extensive panel of G4 and non-G4 structures and to selectively light-up (up to 105-fold), bind (nanomolar range), and stabilize the c-MYC promoter G4 DNA. In particular, association with the c-MYC G4 triggers the disassembly of its supramolecular state (disaggregation-induced emission, DIE) and induces geometrical restrictions (motion-induced change in emission, MICE) leading to a significant enhancement of its emission yield. Moreover, this optical reporter is able to selectively stabilize the c-MYC G4 and inhibit DNA synthesis. Finally, by using confocal laser-scanning microscopy (CLSM) we show the ability of this compound to localize primarily in the subnuclear G4-rich compartments of cancer cells. This work provides a benchmark for the future design and development of a new generation of smart sequence-selective supramolecular G4-binders that combine outstanding sensing and stability properties, to be utilized in anti-cancer therapy.

Ort, förlag, år, upplaga, sidor
Royal Society of Chemistry, 2020
Nationell ämneskategori
Biokemi Molekylärbiologi Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci) Organisk kemi Fysikalisk kemi
Forskningsämne
biokemi; organisk kemi; fysikalisk kemi; cellforskning
Identifikatorer
urn:nbn:se:umu:diva-171513 (URN)10.1039/D0NR03404E (DOI)000545599900025 ()2-s2.0-85087110627 (Scopus ID)
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, KAW2015-0189Vetenskapsrådet, VR-NT 2017-05235Vetenskapsrådet, VR-MH 2018-02651Kempestiftelserna, SMK-1632
Tillgänglig från: 2020-06-03 Skapad: 2020-06-03 Senast uppdaterad: 2025-02-20Bibliografiskt granskad
Das, R. N., Andréasson, M., Kumar, R. & Chorell, E. (2020). Macrocyclization of bis-indole quinolines for selective stabilization of G-quadruplex DNA structures. Chemical Science, 11(38), 10529-10537
Öppna denna publikation i ny flik eller fönster >>Macrocyclization of bis-indole quinolines for selective stabilization of G-quadruplex DNA structures
2020 (Engelska)Ingår i: Chemical Science, ISSN 2041-6520, E-ISSN 2041-6539, Vol. 11, nr 38, s. 10529-10537Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The recognition of G-quadruplex (G4) DNA structures as important regulatory elements in biological mechanisms, and the connection between G4s and the evolvement of different diseases, has sparked interest in developing small organic molecules targeting G4s. However, such compounds often lack drug-like properties and selectivity. Here, we describe the design and synthesis of a novel class of macrocyclic bis-indole quinolines based on their non-macrocyclic lead compounds. The effects of the macrocyclization on the ability to interact with G4 DNA structures were investigated using biophysical assays and molecular dynamic simulations. Overall, this revealed compounds with potent abilities to interact with and stabilize G4 structures and a clear selectivity for both G4 DNA over dsDNA and for parallel/hybrid G4 topologies, which could be attributed to the macrocyclic structure. Moreover, we obtained knowledge about the structure-activity relationship of importance for the macrocyclic design and how structural modifications could be made to construct improved macrocyclic compounds. Thus, the macrocyclization of G4 ligands can serve as a basis for the optimization of research tools to study G4 biology and potential therapeutics targeting G4-related diseases.

Ort, förlag, år, upplaga, sidor
Royal Society of Chemistry, 2020
Nationell ämneskategori
Biokemi Molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-176145 (URN)10.1039/d0sc03519j (DOI)000575657200026 ()2-s2.0-85092433736 (Scopus ID)
Forskningsfinansiär
Kempestiftelserna, SMK-1632Vetenskapsrådet, VR-NT 2017-05235Wenner-Gren Stiftelserna
Tillgänglig från: 2020-10-22 Skapad: 2020-10-22 Senast uppdaterad: 2025-02-20Bibliografiskt granskad
Jamroskovic, J., Doimo, M., Chand, K., Obi, I., Kumar, R., Brännström, K., . . . Sabouri, N. (2020). Quinazoline Ligands Induce Cancer Cell Death through Selective STAT3 Inhibition and G-Quadruplex Stabilization. Journal of the American Chemical Society, 142(6), 2876-2888
Öppna denna publikation i ny flik eller fönster >>Quinazoline Ligands Induce Cancer Cell Death through Selective STAT3 Inhibition and G-Quadruplex Stabilization
Visa övriga...
2020 (Engelska)Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 142, nr 6, s. 2876-2888Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The signal transducer and activator of transcription 3 (STAT3) protein is a master regulator of most key hallmarks and enablers of cancer, including cell proliferation and the response to DNA damage. G-Quadruplex (G4) structures are four-stranded noncanonical DNA structures enriched at telomeres and oncogenes' promoters. In cancer cells, stabilization of G4 DNAs leads to replication stress and DNA damage accumulation and is therefore considered a promising target for oncotherapy. Here, we designed and synthesized novel quinazoline-based compounds that simultaneously and selectively affect these two well-recognized cancer targets, G4 DNA structures and the STAT3 protein. Using a combination of in vitro assays, NMR, and molecular dynamics simulations, we show that these small, uncharged compounds not only bind to the STAT3 protein but also stabilize G4 structures. In human cultured cells, the compounds inhibit phosphorylation-dependent activation of STAT3 without affecting the antiapoptotic factor STAT1 and cause increased formation of G4 structures, as revealed by the use of a G4 DNA-specific antibody. As a result, treated cells show slower DNA replication, DNA damage checkpoint activation, and an increased apoptotic rate. Importantly, cancer cells are more sensitive to these molecules compared to noncancerous cell lines. This is the first report of a promising class of compounds that not only targets the DNA damage cancer response machinery but also simultaneously inhibits the STAT3-induced cancer cell proliferation, demonstrating a novel approach in cancer therapy.

Nationell ämneskategori
Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci) Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:umu:diva-169314 (URN)10.1021/jacs.9b11232 (DOI)000514255300025 ()31990532 (PubMedID)2-s2.0-85079045732 (Scopus ID)
Forskningsfinansiär
Knut och Alice Wallenbergs StiftelseVetenskapsrådetKempestiftelserna, SMK-1632Åke Wibergs StiftelseCancerfondenVästerbottens läns landsting, VLL-643451Västerbottens läns landsting, VLL-832001EU, Horisont 2020, 751474
Tillgänglig från: 2020-03-31 Skapad: 2020-03-31 Senast uppdaterad: 2023-03-24Bibliografiskt granskad
Kumar, R., Chand, K., Bhowmik, S., Das, R. N., Bhattacharjee, S., Hedenström, M. & Chorell, E. (2020). Subtle structural alterations in G-quadruplex DNA regulate site specificity of fluorescence light-up probes. Nucleic Acids Research, 48(3), 1108-1119
Öppna denna publikation i ny flik eller fönster >>Subtle structural alterations in G-quadruplex DNA regulate site specificity of fluorescence light-up probes
Visa övriga...
2020 (Engelska)Ingår i: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 48, nr 3, s. 1108-1119Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

G-quadruplex (G4) DNA structures are linked to key biological processes and human diseases. Small molecules that target specific G4 DNA structures and signal their presence would therefore be of great value as chemical research tools with potential to further advance towards diagnostic and therapeutic developments. However, the development of these types of specific compounds remain as a great challenge. In here, we have developed a compound with ability to specifically signal a certain c-MYC G4 DNA structure through a fluorescence light-up mechanism. Despite the compound's two binding sites on the G4 DNA structure, only one of them result in the fluorescence light-up effect. This G-tetrad selectivity proved to originate from a difference in flexibility that affected the binding affinity and tilt the compound out of the planar conformation required for the fluorescence light-up mechanism. The intertwined relation between the presented factors is likely the reason for the lack of examples using rational design to develop compounds with turn-on emission that specifically target certain G4 DNA structures. However, this study shows that it is indeed possible to develop such compounds and present insights into the molecular details of specific G4 DNA recognition and signaling to advance future studies of G4 biology.

Ort, förlag, år, upplaga, sidor
Oxford University Press, 2020
Nationell ämneskategori
Biokemi Molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-168878 (URN)10.1093/nar/gkz1205 (DOI)000515121900015 ()31912160 (PubMedID)2-s2.0-85082145471 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, VR-NT 2017-05235Kempestiftelserna, SMK-1632
Tillgänglig från: 2020-03-19 Skapad: 2020-03-19 Senast uppdaterad: 2025-02-20Bibliografiskt granskad
Prasad, B., Das, R. N., Jamroskovic, J., Kumar, R., Hedenström, M., Sabouri, N. & Chorell, E. (2020). The Relation Between Position and Chemical Composition of Bis-Indole Substituents Determines Their Interactions With G-Quadruplex DNA. Chemistry - A European Journal, 26(43), 9561-9572
Öppna denna publikation i ny flik eller fönster >>The Relation Between Position and Chemical Composition of Bis-Indole Substituents Determines Their Interactions With G-Quadruplex DNA
Visa övriga...
2020 (Engelska)Ingår i: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 26, nr 43, s. 9561-9572Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

G‐quadruplex (G4) DNA structures are linked to fundamental biological processes and human diseases, which has triggered the development of compounds that affect these DNA structures. However, more knowledge is needed about how small molecules interact with G4 DNA structures. This study describes the development of a new class of bis‐indoles (3,3‐diindolyl‐methyl derivatives) and detailed studies of how they interact with G4 DNA using orthogonal assays, biophysical techniques, and computational studies. This revealed compounds that strongly bind and stabilize G4 DNA structures, and detailed binding interactions which e.g. show that charge variance can play a key role in G4 DNA binding. Furthermore, the structure‐activity relationships generated opened the possibilities to replace or introduce new substituents on the core structure, which is of key importance to optimize compound properties or introduce probes to further expand the possibilities of these compounds as tailored research tools to study G4 biology.

Ort, förlag, år, upplaga, sidor
Wiley-VCH Verlagsgesellschaft, 2020
Nationell ämneskategori
Kemiteknik Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)
Identifikatorer
urn:nbn:se:umu:diva-171213 (URN)10.1002/chem.202000579 (DOI)000544966200001 ()32187406 (PubMedID)2-s2.0-85087461969 (Scopus ID)
Forskningsfinansiär
Kempestiftelserna, SMK-1632Vetenskapsrådet, VR-MH 2018-2651Vetenskapsrådet, 2017-05235Knut och Alice Wallenbergs Stiftelse, KAW2015-0189Cancerfonden, CAN2019/126
Tillgänglig från: 2020-05-28 Skapad: 2020-05-28 Senast uppdaterad: 2023-03-24Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-6347-2169

Sök vidare i DiVA

Visa alla publikationer