Umeå universitets logga

umu.sePublikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
de Andres Gonzalez, Aitor
Alternativa namn
Publikationer (10 of 18) Visa alla publikationer
Kurtser, P., Feng, K., Olofsson, T. & De Andres, A. (2025). One-class anomaly detection through color-to-thermal AI for building envelope inspection. Energy and Buildings, 328, Article ID 115052.
Öppna denna publikation i ny flik eller fönster >>One-class anomaly detection through color-to-thermal AI for building envelope inspection
2025 (Engelska)Ingår i: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 328, artikel-id 115052Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Characterizing the energy performance of building components and locating anomalies is necessary for effectively refurbishing existing buildings. It is often challenging because defects in building envelopes deteriorate without being visible. Passive infrared thermography (PIRT) is a powerful tool used in building inspection. However, thermal image interpretation requires significant domain knowledge and is prone to artifacts arising from a complex interplay of factors. As a result, PIRT-based inspections require skilled professionals, and are labor-intensive and time-consuming. Artificial intelligence (AI) holds great promise to automate building inspection, but its application remains challenging because common approaches rely on extensive labeling and supervised modeling. It is recognized that there is a need for a more applicable and flexible approach to leverage AI to assist PIRT in realistic building inspections. In this study, we present a label-free method for detecting anomalies during thermographic inspection of building envelopes. It is based on the AI-driven prediction of thermal distributions from color images. Effectively the method performs as a one-class classifier of the thermal image regions with a high mismatch between the predicted and actual thermal distributions. The algorithm can learn to identify certain features as normal or anomalous by selecting the target sample used for training. The proposed method has unsupervised modeling capabilities, greater applicability and flexibility, and can be widely implemented to assist human professionals in routine building inspections or combined with mobile platforms to automate the inspection of large areas.

Ort, förlag, år, upplaga, sidor
Elsevier, 2025
Nyckelord
Anomaly detection, Building inspection, Color-to-thermal, GAN, Thermography
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:umu:diva-232595 (URN)10.1016/j.enbuild.2024.115052 (DOI)2-s2.0-85210280431 (Scopus ID)
Forskningsfinansiär
Energimyndigheten, P2021-00202Energimyndigheten, P2022-00141Forskningsrådet Formas, 2022-01475
Tillgänglig från: 2024-12-09 Skapad: 2024-12-09 Senast uppdaterad: 2024-12-09Bibliografiskt granskad
Tapani, T., Lin, H., de Andres Gonzalez, A., Jolly, S. W., Bhuvanendran, H. & Maccaferri, N. (2024). Generation of ultrashort twisted light pulses with arbitrary polarization using a vortex plate retarder. In: 2024 Conference on Lasers and Electro-Optics (CLEO): . Paper presented at 2024 Conference on Lasers and Electro-Optics (CLEO), Charlotte, North Carolina, USA, May 5-10, 2024. Washington DC: Optica Publishing Group, Article ID SW4A.4.
Öppna denna publikation i ny flik eller fönster >>Generation of ultrashort twisted light pulses with arbitrary polarization using a vortex plate retarder
Visa övriga...
2024 (Engelska)Ingår i: 2024 Conference on Lasers and Electro-Optics (CLEO), Washington DC: Optica Publishing Group , 2024, artikel-id SW4A.4Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We use a vortex retarder approach to generate few optical cycles light pulses carrying orbital angular momentum and arbitrary polarization. The optical vortices' structure is then reconstructed in the spatio-temporal domain.

Ort, förlag, år, upplaga, sidor
Washington DC: Optica Publishing Group, 2024
Serie
Technical Digest Series
Nationell ämneskategori
Atom- och molekylfysik och optik Annan fysik
Identifikatorer
urn:nbn:se:umu:diva-230587 (URN)10.1364/CLEO_SI.2024.SW4A.4 (DOI)2-s2.0-85210488319 (Scopus ID)9781957171395 (ISBN)
Konferens
2024 Conference on Lasers and Electro-Optics (CLEO), Charlotte, North Carolina, USA, May 5-10, 2024
Tillgänglig från: 2024-10-08 Skapad: 2024-10-08 Senast uppdaterad: 2024-12-19Bibliografiskt granskad
de Andres Gonzalez, A., Bhadoria, S., Marmolejo, J. T., Muschet, A., Fischer, P., Barzegar, H. R., . . . Veisz, L. (2024). Unforeseen advantage of looser focusing in vacuum laser acceleration. Communications Physics, 7(1), Article ID 293.
Öppna denna publikation i ny flik eller fönster >>Unforeseen advantage of looser focusing in vacuum laser acceleration
Visa övriga...
2024 (Engelska)Ingår i: Communications Physics, E-ISSN 2399-3650, Vol. 7, nr 1, artikel-id 293Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Acceleration of electrons in vacuum directly by intense laser fields holds great promise for the generation of high-charge, ultrashort, relativistic electron bunches. While the energy gain is expected to be higher with tighter focusing, this does not account for the reduced acceleration range, which is limited by diffraction. Here, we present the results of an experimental investigation that exposed nanotips to relativistic few-cycle laser pulses. We demonstrate the vacuum laser acceleration of electron beams with 100s pC charge and 15 MeV energy. Two different focusing geometries, with normalized vector potential a0 of 9.8 and 3.8, produced comparable overall charge and electron spectra, despite a factor of almost ten difference in peak intensity. Our results are in good agreement with 3D particle-in-cell simulations, which indicate the importance of dephasing.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2024
Nationell ämneskategori
Fusion, plasma och rymdfysik Acceleratorfysik och instrumentering
Identifikatorer
urn:nbn:se:umu:diva-229418 (URN)10.1038/s42005-024-01781-9 (DOI)001303229500001 ()2-s2.0-85202918063 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2019-02376Vetenskapsrådet, 2020-05111Knut och Alice Wallenbergs Stiftelse, 2019.0140Kempestiftelserna, SMK21-0017
Tillgänglig från: 2024-09-09 Skapad: 2024-09-09 Senast uppdaterad: 2024-09-09Bibliografiskt granskad
Tapani, T., Lin, H., de Andres, A., Jolly, S. W., Bhuvanendran, H. & Maccaferri, N. (2024). Vortex plate retarder-based approach for the generation of sub-20 fs light pulses carrying orbital angular momentum. Journal of Optics, 26(4), Article ID 045502.
Öppna denna publikation i ny flik eller fönster >>Vortex plate retarder-based approach for the generation of sub-20 fs light pulses carrying orbital angular momentum
Visa övriga...
2024 (Engelska)Ingår i: Journal of Optics, ISSN 2040-8978, E-ISSN 2040-8986, Vol. 26, nr 4, artikel-id 045502Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We use a vortex retarder-based approach to generate few optical cycles light pulses carrying orbital angular momentum (OAM) (known also as twisted light or optical vortex) from a Yb:KGW oscillator pumping a noncollinear optical parametric amplifier generating sub-10 fs linearly polarized light pulses in the near infrared spectral range (central wavelength 850 nm). We characterize such vortices both spatially and temporally by using astigmatic imaging technique and second harmonic generation-based frequency resolved optical gating, respectively. The generation of optical vortices is analyzed, and its structure reconstructed by estimating the spatio-spectral field and Fourier transforming it into the temporal domain. As a proof of concept, we show that we can also generate sub-20 fs light pulses carrying OAM and with arbitrary polarization on the first-order Poincaré sphere.

Ort, förlag, år, upplaga, sidor
Institute of Physics (IOP), 2024
Nyckelord
optical vortex, orbital angular momentum, twisted light, ultrashort light pulses, vortex plate retarder
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:umu:diva-222577 (URN)10.1088/2040-8986/ad2e1f (DOI)001183679100001 ()2-s2.0-85187554162 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2021-05784Kempestiftelserna, JCK-3122EU, Horisont 2020, 801505
Tillgänglig från: 2024-04-08 Skapad: 2024-04-08 Senast uppdaterad: 2024-04-11Bibliografiskt granskad
Nana Koya, A., Romanelli, M., Kuttruff, J., Henriksson, N., Stefancu, A., Grinblat, G., . . . Maccaferri, N. (2023). Advances in ultrafast plasmonics. Applied Physics Reviews, 10(2), Article ID 021318.
Öppna denna publikation i ny flik eller fönster >>Advances in ultrafast plasmonics
Visa övriga...
2023 (Engelska)Ingår i: Applied Physics Reviews, E-ISSN 1931-9401, Vol. 10, nr 2, artikel-id 021318Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

In the past 20 years, we have reached a broad understanding of many light-driven phenomena in nanoscale systems. The temporal dynamics of the excited states are instead quite challenging to explore, and, at the same time, crucial to study for understanding the origin of fundamental physical and chemical processes. In this review, we examine the current state and prospects of ultrafast phenomena driven by plasmons both from a fundamental and applied point of view. This research area is referred to as ultrafast plasmonics and represents an outstanding playground to tailor and control fast optical and electronic processes at the nanoscale, such as ultrafast optical switching, single photon emission, and strong coupling interactions to tailor photochemical reactions. Here, we provide an overview of the field and describe the methodologies to monitor and control nanoscale phenomena with plasmons at ultrafast timescales in terms of both modeling and experimental characterization. Various directions are showcased, among others recent advances in ultrafast plasmon-driven chemistry and multi-functional plasmonics, in which charge, spin, and lattice degrees of freedom are exploited to provide active control of the optical and electronic properties of nanoscale materials. As the focus shifts to the development of practical devices, such as all-optical transistors, we also emphasize new materials and applications in ultrafast plasmonics and highlight recent development in the relativistic realm. The latter is a promising research field with potential applications in fusion research or particle and light sources providing properties such as attosecond duration.

Ort, förlag, år, upplaga, sidor
American Institute of Physics (AIP), 2023
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:umu:diva-208170 (URN)10.1063/5.0134993 (DOI)001011167700001 ()2-s2.0-85163206247 (Scopus ID)
Forskningsfinansiär
EU, Horisont Europa, 101046920Europeiska kommissionen, 964363EU, Europeiska forskningsrådet, 819871Deutsche Forschungsgemeinschaft (DFG), EXC 2089/1‐390776260Knut och Alice Wallenbergs Stiftelse, 2019.0140Kempestiftelserna, SMK21-0017Kempestiftelserna, JCK-3122Vetenskapsrådet, 2021-05784
Anmärkning

Originally included in thesis in manuscript form. 

Tillgänglig från: 2023-05-10 Skapad: 2023-05-10 Senast uppdaterad: 2024-07-02Bibliografiskt granskad
de Andres Gonzalez, A. (2023). Enhancement of few-cycle light fields for relativistic nanophotonics. (Doctoral dissertation). Umeå: Umeå University
Öppna denna publikation i ny flik eller fönster >>Enhancement of few-cycle light fields for relativistic nanophotonics
2023 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Förbättring av få-cykliska ljusfält för relativistisk nanofotonik
Abstract [en]

Pulses of light that are both ultrashort and ultraintense are often generated using optical parametric amplifiers (OPA). These are capable of driving highly non-linear interactions with matter, which are interesting when studying the fundamental laws of our universe. Furthermore, they are also used in many scientific and industrial applications, such as particle accelerators, inertial-confinement nuclear fusion, and medical diagnostics and treatment. This thesis explores the diagnostic and optimization of pulses of light with extreme properties and utilizes them to drive electron acceleration.

The applied light pulses with very short duration (<5 fs) and high peak power (>10 TW) are sensitive to develop spatio-temporal aberrations. These are color-dependent distortions that can significantly degrade the pulse properties, like peak-intensity, and affect their applicability. Furthermore, in most cases they are not easy to correctly diagnose, with current tools failing to provide widely applicable solutions. In this thesis, we describe a new type of spatio-temporal coupling that is especially relevant for optical parametric synthesizers (OPS), systems that coherently combine multiple OPA stages. To do this, we have contributed to the development of two methods for the characterization of such aberrations, the so-called simplified-INSIGHT and HASO multispectral. These enabled us to further improve the structure of our OPS and laser systems.

We also explored the applicability of light pulses to drive relativistic electron acceleration in vacuum. To this end, an injection system using nanotips is presented, capable of inserting electrons spatially in the focus and temporally in the most intense light-cycle. This way, vacuum laser accelerated electrons of up to 14 MeV were detected using a tight focusing configuration (f#1) and their properties characterized. Furthermore, we investigated the dependence of the acceleration process when the focusing geometry is relaxed (f#3). This resulted in the unexpected outcome of similar electron energies in both cases, although the intensity was ten times reduced. This indicates that the decrease in accelerating field strength is compensated by longer acceleration lengths, which is not predicted by currently existing analytical models. 

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2023. s. 125
Nyckelord
Vacuum laser acceleration, spatio-spectral characterization, relativistic nanophotonics, optical parametric synthesis
Nationell ämneskategori
Atom- och molekylfysik och optik
Forskningsämne
fysik
Identifikatorer
urn:nbn:se:umu:diva-208146 (URN)978-91-8070-094-8 (ISBN)978-91-8070-093-1 (ISBN)
Disputation
2023-06-08, Lilla hörsalen - KBE301, KBC building, Umeå, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vetenskapsrådet, 2019-02376Knut och Alice Wallenbergs Stiftelse, 2019.0140Kempestiftelserna, SMK21-0017Vetenskapsrådet, 2020-05111
Tillgänglig från: 2023-05-17 Skapad: 2023-05-10 Senast uppdaterad: 2024-05-10Bibliografiskt granskad
Veisz, L., de Andres Gonzalez, A., Bhadoria, S., Gonoskov, A., Marklund, M., Blackburn, T., . . . Hanstorp, D. (2023). Relativistic electron acceleration from nanotips. In: Proceedings of SPIE: The international society for optical engineering. Paper presented at Laser Acceleration of Electrons, Protons, and Ions VII 2023, Prague, Czech Republic, 25-27 April, 2023.. SPIE - International Society for Optical Engineering, Article ID 1257903.
Öppna denna publikation i ny flik eller fönster >>Relativistic electron acceleration from nanotips
Visa övriga...
2023 (Engelska)Ingår i: Proceedings of SPIE: The international society for optical engineering, SPIE - International Society for Optical Engineering, 2023, artikel-id 1257903Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Vacuum laser acceleration (VLA) of electrons has been an intense field of research for a long time due to the extremely high (>1 TV/m) accelerating fields. However, it is very challenging to realize and only a few promising experiments have been performed which have demonstrated the principle. Here, we report on the interaction of relativistic intensity (10-20 Wcm-2) sub-two optical cycle (<5 fs) laser pulses with nanotips to realize and optimize VLA. Various properties of accelerated electrons (angular distribution, charge, and electron spectrum) are measured with different intensities and carrier envelope phases of the laser pulse. Among others, waveform dependence of the electron propagation direction is observed. Furthermore, comparable or even higher electron energies beyond 10 MeV are detected with lower laser intensity, i.e., longer focusing, than with high intensity. These surprising results are reproduced using Particle-In-Cell simulations, which indicate a nanophotonics electron emission from the nanotip followed by VLA. In fact, the unexpected observations are a direct proof of the VLA process and provide a way to optimize it towards higher energy, isolated, attosecond electron bunch generation.

Ort, förlag, år, upplaga, sidor
SPIE - International Society for Optical Engineering, 2023
Serie
Laser Acceleration of Electrons, Protons, and Ions, ISSN 0277786X, E-ISSN 1996756X
Nyckelord
electron acceleration, Few-cycle laser, laser-plasma acceleration, nanomaterial, optical parametric chirped pulse amplifier, particle-in-cell, relativistic laser-plasma interaction, vacuum laser acceleration
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:umu:diva-214594 (URN)10.1117/12.2669592 (DOI)2-s2.0-85171169015 (Scopus ID)9781510662780 (ISBN)9781510662797 (ISBN)
Konferens
Laser Acceleration of Electrons, Protons, and Ions VII 2023, Prague, Czech Republic, 25-27 April, 2023.
Tillgänglig från: 2023-10-02 Skapad: 2023-10-02 Senast uppdaterad: 2023-10-02Bibliografiskt granskad
de Andres Gonzalez, A., Jolly, S. W., Fischer, P., Muschet, A. A., Schnur, F. & Veisz, L. (2023). Spatio-spectral couplings in optical parametric amplifiers. Optics Express, 31(8), 12036-12048
Öppna denna publikation i ny flik eller fönster >>Spatio-spectral couplings in optical parametric amplifiers
Visa övriga...
2023 (Engelska)Ingår i: Optics Express, E-ISSN 1094-4087, Vol. 31, nr 8, s. 12036-12048Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Optical parametric amplification (OPA) is a powerful tool for the generation of ultrashort light pulses. However, under certain circumstances, it develops spatio-spectral couplings, color dependent aberrations that degrade the pulse properties. In this work, we present a spatio-spectral coupling generated by a non-collimated pump beam and resulting in the change of direction of the amplified signal with respect to the input seed. We experimentally characterize the effect, introduce a theoretical model to explain it as well as reproduce it through numerical simulations. It affects high-gain non-collinear OPA configurations and becomes especially relevant in sequential optical parametric synthesizers. In collinear configuration, however, beyond the direction change, also angular and spatial chirp is produced. We obtain with a synthesizer about 40% decrease in peak intensity in the experiments and local elongation of the pulse duration by more than 25% within the spatial full width at half maximum at the focus. Finally, we present strategies to correct or mitigate the coupling and demonstrate them in two different systems. Our work is important for the development of OPA-based systems as well as few-cycle sequential synthesizers.

Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:umu:diva-206141 (URN)10.1364/oe.483534 (DOI)000975288600003 ()2-s2.0-85152475606 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2019-02376Vetenskapsrådet, 2020-05111Knut och Alice Wallenbergs Stiftelse, 2019.0140Kempestiftelserna, SMK21-0017
Tillgänglig från: 2023-03-29 Skapad: 2023-03-29 Senast uppdaterad: 2023-09-05Bibliografiskt granskad
de Andres Gonzalez, A., Bhadoria, S., Marmolejo, J., Muschet, A., Fischer, P., Gonoskov, A., . . . Veisz, L. (2023). Vacuum laser acceleration of electrons injected from nanotips. In: 2023 conference on lasers and electro-optics Europe and European quantum electronics conference, CLEO/Europe-EQEC 2023: . Paper presented at 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023, Munich, 26-30 June, 2023.. Institute of Electrical and Electronics Engineers (IEEE)
Öppna denna publikation i ny flik eller fönster >>Vacuum laser acceleration of electrons injected from nanotips
Visa övriga...
2023 (Engelska)Ingår i: 2023 conference on lasers and electro-optics Europe and European quantum electronics conference, CLEO/Europe-EQEC 2023, Institute of Electrical and Electronics Engineers (IEEE), 2023Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Vacuum laser acceleration (VLA) is a paradigm that utilizes the strong fields of focused laser light to accelerate electrons in vacuum. Despite its conceptual simplicity and a large existing collection of theoretical studies, realizing VLA in practice has proven remarkably challenging due to the difficulties associated with efficient injection: the electrons to be accelerated must be pre-energized and temporally compressed below an optical half-cycle before timely entering the rapidly oscillating fields of the laser. Therefore, only a handful of experiments have been published up to date, and a knowledge gap remains [1-3].

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2023
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:umu:diva-216640 (URN)10.1109/CLEO/EUROPE-EQEC57999.2023.10231402 (DOI)2-s2.0-85175734559 (Scopus ID)9798350345995 (ISBN)979-8-3503-4600-8 (ISBN)
Konferens
2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023, Munich, 26-30 June, 2023.
Tillgänglig från: 2023-11-29 Skapad: 2023-11-29 Senast uppdaterad: 2023-11-29Bibliografiskt granskad
Muschet, A. A., de Andres Gonzalez, A., Smijesh, N. & Veisz, L. (2022). An easy technique for focus characterization and optimization of XUV and soft X-ray pulses. Applied Sciences, 12(11), Article ID 5652.
Öppna denna publikation i ny flik eller fönster >>An easy technique for focus characterization and optimization of XUV and soft X-ray pulses
2022 (Engelska)Ingår i: Applied Sciences, E-ISSN 2076-3417, Vol. 12, nr 11, artikel-id 5652Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

For many applications of extreme ultraviolet (XUV) and X-ray pulses, a small focus size is crucial to reach the required intensity or spatial resolution. In this article, we present a simple way to characterize an XUV focus with a resolution of 1.85 µm. Furthermore, this technique was applied for the measurement and optimization of the focus of an ellipsoidal mirror for photon energies ranging from 18 to 150 eV generated by high-order harmonics. We envisage a broad range of applications of this approach with sub-micrometer resolution from high-harmonic sources via synchrotrons to free-electron lasers.

Ort, förlag, år, upplaga, sidor
MDPI, 2022
Nyckelord
XUV micro-focusing; X-ray micro-focusing; ellipsoidal mirror; XUV focus characterization; XUV focus optimization
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:umu:diva-201972 (URN)10.3390/app12115652 (DOI)000808791500001 ()2-s2.0-85131735989 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2019-02376Vetenskapsrådet, 2020-05111Knut och Alice Wallenbergs Stiftelse, 2019.0140Kempestiftelserna, SMK21-0017
Tillgänglig från: 2022-12-28 Skapad: 2022-12-28 Senast uppdaterad: 2023-05-10Bibliografiskt granskad
Organisationer

Sök vidare i DiVA

Visa alla publikationer