Open this publication in new window or tab >>Show others...
2025 (English)In: Communications Materials, E-ISSN 2662-4443, Vol. 6, no 1, article id 115Article in journal (Refereed) Published
Abstract [en]
Trimetallic nickel–iron–molybdenum oxides are excellent electrocatalysts for alkaline water electrolysis despite experiencing severe molybdenum dissolution. While the impact of molybdenum on fresh samples is well-understood, its substantial loss during operation without compromising performance presents a unique puzzle. Here, we show that the initial presence of molybdenum induces the formation of nickel vacancies and distorts octahedral nickel sites. This structural distortion induces charge transfer between lattice oxygen and nickel, inducing an early formation and stabilization of active nickel oxyhydroxides. Even after complete molybdenum leaching and transitioning into a bimetallic nickel-iron oxide, the catalyst retains its exceptional performance due to the persistence of distorted octahedral nickel sites. Understanding this process enables the exploration of alternative metals that could induce similar structural distortions, as well as inspire similar strategies in other electrocatalysts. (Figure presented.)
Place, publisher, year, edition, pages
Springer Nature, 2025
National Category
Materials Chemistry
Identifiers
urn:nbn:se:umu:diva-240309 (URN)10.1038/s43246-025-00842-y (DOI)001502814300001 ()2-s2.0-105007544299 (Scopus ID)
Funder
The Kempe Foundations, JCK-2132Carl Tryggers foundation , CTS 21-1581Olle Engkvists stiftelse, 219-0116Swedish Research Council, 2021-04629Swedish Foundation for Strategic Research, ID22-0062
2025-06-242025-06-242025-06-24Bibliographically approved