Umeå University's logo

umu.sePublications
Change search
Link to record
Permanent link

Direct link
Penaka, Santhan ReddyORCID iD iconorcid.org/0000-0002-7790-4855
Publications (7 of 7) Show all publications
Penaka, S. R., Feng, K. & Lu, W. (2025). Impact of thermal properties on building stock energy use using explainable artificial intelligence. In: Yaowu Wang; Cheng Su; Geoffrey Q. P. Shen (Ed.), ICCREM 2024: ESG Development in the Construction Industry: proceedings of the International Conference on Construction and Real Estate Management 2024. Paper presented at 2024 International Conference on Construction and Real Estate Management: ESG Development in the Construction, ICCREM 2024, Guangzhou, China, 23 - 24 November 2024 (pp. 870-878). American Society of Civil Engineers (ASCE)
Open this publication in new window or tab >>Impact of thermal properties on building stock energy use using explainable artificial intelligence
2025 (English)In: ICCREM 2024: ESG Development in the Construction Industry: proceedings of the International Conference on Construction and Real Estate Management 2024 / [ed] Yaowu Wang; Cheng Su; Geoffrey Q. P. Shen, American Society of Civil Engineers (ASCE), 2025, p. 870-878Conference paper, Published paper (Refereed)
Abstract [en]

As part of Sweden's commitment to carbon neutrality, various municipalities have established energy efficiency targets. Achieving these targets requires decision-making knowledge at the local level, particularly concerning the energy retrofitting of existing building stocks. It includes understanding of the thermal properties (U-values) of building stock, their impact on energy use, and the potential energy retrofits. Our research focuses on assessing the thermal properties performance and their impact on energy use of residential building stocks in Umeå, Sweden. We employ explainable artificial intelligence (XAI) integrated with machine learning regression framework to elucidate how different building thermal features influence the building's energy use and also the correlations among these features. The findings highlight the significant impact of building floor area on energy use, followed by location, age, etc. Among thermal properties, the exterior walls have high impact and attic floor has the lowest impact on the energy use of Umeå's residential building stock. Ultimately, this study provides municipality-level decision-making insights for planning energy retrofitting initiatives for Umeå building stock.

Place, publisher, year, edition, pages
American Society of Civil Engineers (ASCE), 2025
Series
ICCREM series
National Category
Building Technologies
Identifiers
urn:nbn:se:umu:diva-237786 (URN)10.1061/9780784485910.084 (DOI)2-s2.0-105002236237 (Scopus ID)9780784485910 (ISBN)
Conference
2024 International Conference on Construction and Real Estate Management: ESG Development in the Construction, ICCREM 2024, Guangzhou, China, 23 - 24 November 2024
Available from: 2025-04-30 Created: 2025-04-30 Last updated: 2025-04-30Bibliographically approved
Penaka, S. R., Feng, K., Olofsson, T., Rebbling, A. & Lu, W. (2024). Improved energy retrofit decision making through enhanced bottom-up building stock modelling. Energy and Buildings, 318, Article ID 114492.
Open this publication in new window or tab >>Improved energy retrofit decision making through enhanced bottom-up building stock modelling
Show others...
2024 (English)In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 318, article id 114492Article in journal (Refereed) Published
Abstract [en]

Modelling the performance of building stocks is crucial in facilitating the renovation at the building stock level. Bottom-up building stock modelling begins by detailing individual buildings and then aggregates them into stock level. Its primary advantage lies in capturing the inherent heterogeneity among distinct buildings, which enables tailored retrofitting. Naturally, this approach requires a comprehensive dataset with detailed building information such as geometry and envelope thermal properties. However, a common challenge is the incompleteness of available data in individual datasets. To address this, previous bottom-up studies have filled the missing data with representative or statistical data. Such practice could lead to homogeneous modelling of distinct buildings within the same statistical group. This limits the utilization of key ability of bottom-up building stock modelling in capturing heterogeneity, such as tailored retrofitting to explore potential retrofitting areas and strategies. To address this challenge of homogeneous modelling, we utilize data fusion framework for bottom-up building stock modelling, employing probabilistic record linkage and inverse modelling techniques to integrate multiple incomplete building performance datasets. This framework fills the missing data in one dataset with information from another, thus capturing inherent heterogeneity in the building stock. An empirical study was conducted in Umeå, Sweden, to investigate the framework's effectiveness by modelling building stock with various retrofitting strategies. This study contribution lies in enhancing bottom-up building stock modelling by capturing inherent heterogeneity, to provide tailored retrofitting solutions.

Place, publisher, year, edition, pages
Elsevier, 2024
Keywords
Bottom-up, Building stock modelling, Data fusion, Energy efficiency, Heterogeneity, Incomplete data, Inverse modelling, Record linkage
National Category
Other Civil Engineering
Identifiers
urn:nbn:se:umu:diva-227827 (URN)10.1016/j.enbuild.2024.114492 (DOI)001262604500001 ()2-s2.0-85197361082 (Scopus ID)
Projects
Intelligent Human-Buildings Interactions Lab: Identify, Quantify and Guide Energy-saving Behavior at University CampusRESILIENTa Energisystem Kompetenscentrum
Funder
Swedish Research Council Formas, 2022-01475Swedish Energy Agency, P2022-00141Swedish Energy Agency, 52686-1Swedish Research Council Formas, 2020-02085
Available from: 2024-07-12 Created: 2024-07-12 Last updated: 2025-04-24Bibliographically approved
Penaka, S. R., Feng, K., Rebbling, A., Azizi, S., Lu, W. & Olofsson, T. (2023). A data-driven framework for building energy benchmarking and renovation decision-making support in Sweden. In: SBE23-Thessaloniki: Sustainable built environments: Paving the way for achieving the targets of 2030 and beyond. Paper presented at 2023 Sustainable Built Environments: Paving the Way for Achieving the Targets of 2030 and Beyond, SBE23-Thessaloniki, Online, March 22-24, 2023. Institute of Physics (IOP), Article ID 012005.
Open this publication in new window or tab >>A data-driven framework for building energy benchmarking and renovation decision-making support in Sweden
Show others...
2023 (English)In: SBE23-Thessaloniki: Sustainable built environments: Paving the way for achieving the targets of 2030 and beyond, Institute of Physics (IOP), 2023, article id 012005Conference paper, Published paper (Refereed)
Abstract [en]

In Europe, the buildings sector is responsible for 40% of energy use and more than 30% of buildings are older than 50 years. Due to ageing, a large number of houses require energy-efficient renovation to meet building energy performance standards and the national energy efficiency target. Although Swedish house owners are willing to improve energy efficiency, there is a need for a dedicated platform providing decision-making knowledge for house owners to benchmark their buildings. This paper proposes a data-driven framework for building energy renovation benchmarking as part of an energy advisory service development for the Vasterbotten region, Sweden. This benchmark model facilitates regional homeowners to benchmark their building energy performance relative to the national target and similar neighbourhood buildings. Specifically, based on user input data such as energy use, location, construction year, floor area, etc., this model benchmarks the user's building performance using two benchmark references i.e., 1) Sweden's target to reduce buildings by 50% energy use intensity (EUI) by 50% by 2050 compared to the average EUI in 1995, 2) comparing user building with the most relevant peer group of buildings, using energy performance certificates (EPC) big data. Several building groups will be classified based on influential factors that affect building energy use. Hence, this benchmark provides decision-making supportive knowledge to homeowners e.g., whether they need to perform an energy-efficient renovation. In the future, this methodology will be extended and implemented in the digital platform to provide helpful insights to decide on suitable EEMs. This work is an integral part of project AURORAL aims to deliver an interoperable, open, and integrated digital platform, demonstrated by cross-domain applications through large-scale pilots in 8 regions in Europe, including Vasterbotten.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2023
Series
IOP Conference Series: Earth and Environmental Science, ISSN 1755-1307, E-ISSN 1755-1315 ; 1196
National Category
Energy Engineering
Identifiers
urn:nbn:se:umu:diva-212813 (URN)10.1088/1755-1315/1196/1/012005 (DOI)2-s2.0-85166560520 (Scopus ID)
Conference
2023 Sustainable Built Environments: Paving the Way for Achieving the Targets of 2030 and Beyond, SBE23-Thessaloniki, Online, March 22-24, 2023
Funder
EU, Horizon 2020, 101016854Swedish Research Council Formas, 2020-02085
Available from: 2023-08-16 Created: 2023-08-16 Last updated: 2025-03-07Bibliographically approved
Lu, C., Li, S., Penaka, S. R. & Olofsson, T. (2023). Automated machine learning-based framework of heating and cooling load prediction for quick residential building design. Energy, 274, Article ID 127334.
Open this publication in new window or tab >>Automated machine learning-based framework of heating and cooling load prediction for quick residential building design
2023 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 274, article id 127334Article in journal (Refereed) Published
Abstract [en]

Reducing the heating and cooling load through energy-efficient building design can help decarbonize the building sector. Heating and cooling load prediction using machine learning (ML) techniques become increasingly important in the rapid assessment of building design variables at the early design stage. However, when applying the ML techniques, it still requires expert knowledge and manually frequent intervention to improve the prediction performance. Hence, this study proposed an automated machine learning (AutoML)-based framework to automatically generate the optimal ML pipelines for heating and cooling load prediction. An experimental dataset of residential buildings was used to evaluate the proposed framework. The proposed framework achieved the best performance with R2 of 0.9965 and RMSE of 0.602 kWh/m2 for heating load prediction, and R2 of 0.9899 and RMSE of 0.973 kWh/m2 for cooling load prediction. The prediction results showed that the proposed framework outperformed the other improved ML models from the representative studies in the last five years. Further, an explainable analysis of the ML models was explored to reveal the relationships between design variables and heating and cooling load. The proposed framework aims at promoting the AutoML-based framework to designers for building energy performance prediction without excessive ML knowledge and manually frequent intervention.

Place, publisher, year, edition, pages
Elsevier, 2023
Keywords
Automated machine learning, Energy-efficient building, Heating and cooling load, Residential building design
National Category
Energy Engineering Energy Systems
Identifiers
urn:nbn:se:umu:diva-206455 (URN)10.1016/j.energy.2023.127334 (DOI)000966965100001 ()2-s2.0-85151011404 (Scopus ID)
Available from: 2023-04-06 Created: 2023-04-06 Last updated: 2024-07-02Bibliographically approved
Yu, H., Feng, K., Penaka, S. R., Man, Q., Lu, W. & Olofsson, T. (2023). Data-driven modelling of building retrofitting with incomplete physics: a generative design and machine learning approach. Paper presented at NSB 2023, 13th Nordic Symposium on building physics, Aalborg, Denmark, June 12-14, 2023. Journal of Physics, Conference Series, 2654, Article ID 012053.
Open this publication in new window or tab >>Data-driven modelling of building retrofitting with incomplete physics: a generative design and machine learning approach
Show others...
2023 (English)In: Journal of Physics, Conference Series, ISSN 1742-6588, E-ISSN 1742-6596, Vol. 2654, article id 012053Article in journal (Refereed) Published
Abstract [en]

Building performance simulation (BPS) based on physical models is a popular method for estimating the expected energy savings from energy-efficient building retrofitting. However, for many buildings, especially older buildings, built several decades ago, an operator do not have full access to the complete information for the BPS method. Incomplete information comes from the lack of detailed building physics, such as the thermal transmittance of some building components due to the deterioration of components over time. To address this challenge, this paper proposed a data-driven approach to support the decision-making of building retrofitting selections under incomplete information conditions. The data-driven approach integrates the backpropagation neural networks (BRBNN), fuzzy C-means clustering (FCM), and generative design (GD). It generates the required big database of building performance through generative design, which can overcome the problem of incomplete information during building performance simulation and energy-efficient retrofitting. The case study is based on old residential buildings in severe cold regions of China, using the proposed approach to predict energy-efficient retrofitting performance. The results indicated that the proposed approach can model the performance of residential buildings with more than 90% confidence, and show the variation of results. The core contribution of the proposed approach is to provide a way of performance prediction of individual buildings resulting from different retrofitting measures under the incomplete physics condition.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2023
National Category
Building Technologies
Identifiers
urn:nbn:se:umu:diva-220010 (URN)10.1088/1742-6596/2654/1/012053 (DOI)2-s2.0-85181172898 (Scopus ID)
Conference
NSB 2023, 13th Nordic Symposium on building physics, Aalborg, Denmark, June 12-14, 2023
Funder
Swedish Research Council Formas, 2020-02085EU, Horizon 2020, AURORAL
Available from: 2024-02-02 Created: 2024-02-02 Last updated: 2025-03-07Bibliographically approved
Liu, B., Penaka, S. R., Lu, W., Feng, K., Rebbling, A. & Olofsson, T. (2023). Data-driven quantitative analysis of an integrated open digital ecosystems platform for user-centric energy retrofits: A case study in northern Sweden. Technology in society, 75, Article ID 102347.
Open this publication in new window or tab >>Data-driven quantitative analysis of an integrated open digital ecosystems platform for user-centric energy retrofits: A case study in northern Sweden
Show others...
2023 (English)In: Technology in society, ISSN 0160-791X, E-ISSN 1879-3274, Vol. 75, article id 102347Article in journal (Refereed) Published
Abstract [en]

This paper presents an open digital ecosystem based on a web-framework with a functional back-end server for user-centric energy retrofits. This data-driven web framework is proposed for building energy renovation benchmarking as part of an energy advisory service development for the Västerbotten region, Sweden. A 4-tier architecture is developed and programmed to achieve users’ interactive design and visualization via a web browser. Six data-driven methods are integrated into this framework as backend server functions. Based on these functions, users can be supported by this decision-making system when they want to know if a renovation is needed or not. Meanwhile, influential factors (input values) from the database that affect energy usage in buildings are to be analyzed via quantitative analysis, i.e., sensitivity analysis. The contributions to this open ecosystem platform in energy renovation are: 1) A systematic framework that can be applied to energy efficiency with data-driven approaches, 2) A user-friendly web-based platform that is easy and flexible to use, and 3) integrated quantitative analysis into the framework to obtain the importance among all the relevant factors. This computational framework is designed for stakeholders who would like to get preliminary information in energy advisory. The improved energy advisor service enabled by the developed platform can significantly reduce the cost of decision-making, enabling decision-makers to participate in such professional knowledge-required decisions in a deliberate and efficient manner. This work is funded by the AURORAL project, which integrates an open and interoperable digital platform, demonstrated through regional large-scale pilots in different countries of Europe by interdisciplinary applications.

Place, publisher, year, edition, pages
Elsevier, 2023
Keywords
Energy retrofits, Data-driven modeling, Decision support systems (DSS), Quantitative analysis, Open ecosystem platform
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Energy Engineering
Identifiers
urn:nbn:se:umu:diva-214835 (URN)10.1016/j.techsoc.2023.102347 (DOI)001086968700001 ()2-s2.0-85172316454 (Scopus ID)
Funder
The Kempe Foundations, JCK-2136EU, Horizon 2020, 101016854J. Gust. Richert stiftelse, 2023-00884Swedish Research Council, 2018-05973Swedish Research Council, 2022-06725
Available from: 2023-10-02 Created: 2023-10-02 Last updated: 2025-04-24Bibliographically approved
Feng, K., Lu, W., Penaka, S. R., Eklund, E., Andersson, S. & Olofsson, T. (2022). Energy-efficient retrofitting with incomplete building information: a data-driven approach. In: A. Li, T. Olofsson; R. Kosonen (Ed.), E3S web of conferences: . Paper presented at 16th ROOMVENT Conference (ROOMVENT 2022), Xi'an, China, 16-19 september, 2022.. EDP Sciences, 356, Article ID 01003.
Open this publication in new window or tab >>Energy-efficient retrofitting with incomplete building information: a data-driven approach
Show others...
2022 (English)In: E3S web of conferences / [ed] A. Li, T. Olofsson; R. Kosonen, EDP Sciences, 2022, Vol. 356, article id 01003Conference paper, Published paper (Refereed)
Abstract [en]

The high-performance insulations and energy-efficient HVAC have been widely employed as energy-efficient retrofitting for building renovation. Building performance simulation (BPS) based on physical models is a popular method to estimate expected energy savings for building retrofitting. However, many buildings, especially the older building constructed several decades ago, do not have full access to complete information for a BPS method. To address this challenge, this paper proposes a data-driven approach to support the decision-making of building retrofitting under incomplete information. The data-driven approach is constructed by integrating backpropagation neural networks (BRBNN), fuzzy C-means clustering (FCM), principal component analysis (PCA), and trimmed scores regression (TSR). It is motivated by the available big data sources from real-life building performance datasets to directly model the retrofitting performances without generally missing information, and simultaneously impute the case-specific incomplete information. This empirical study is conducted on real-life buildings in Sweden. The result indicates that the approach can model the performance ranges of energy-efficient retrofitting for family houses with more than 90% confidence. The developed approach provides a tool to predict the performance of individual buildings from different retrofitting measures, enabling supportive decision-making for building owners with inaccessible complete building information, to compare alternative retrofitting measures.

Place, publisher, year, edition, pages
EDP Sciences, 2022
Series
ROOMVENT Conference, ISSN 25550403, E-ISSN 22671242
National Category
Building Technologies
Identifiers
urn:nbn:se:umu:diva-204512 (URN)10.1051/e3sconf/202235601003 (DOI)2-s2.0-85146829162 (Scopus ID)
Conference
16th ROOMVENT Conference (ROOMVENT 2022), Xi'an, China, 16-19 september, 2022.
Funder
Swedish Research Council FormasEU, Horizon 2020
Available from: 2023-02-07 Created: 2023-02-07 Last updated: 2025-03-07Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-7790-4855

Search in DiVA

Show all publications