Umeå University's logo

umu.sePublications
Change search
Link to record
Permanent link

Direct link
Andersson, Thilde
Publications (1 of 1) Show all publications
Stael, S., Sabljić, I., Audenaert, D., Andersson, T., Tsiatsiani, L., Kumpf, R. P., . . . Van Breusegem, F. (2023). Structure-function study of a Ca2+-independent metacaspase involved in lateral root emergence. Proceedings of the National Academy of Sciences of the United States of America, 120(22), Article ID e2303480120.
Open this publication in new window or tab >>Structure-function study of a Ca2+-independent metacaspase involved in lateral root emergence
Show others...
2023 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 120, no 22, article id e2303480120Article in journal (Refereed) Published
Abstract [en]

Metacaspases are part of an evolutionarily broad family of multifunctional cysteine proteases, involved in disease and normal development. As the structure-function relationship of metacaspases remains poorly understood, we solved the X-ray crystal structure of an Arabidopsis thaliana type II metacaspase (AtMCA-IIf) belonging to a particular subgroup not requiring calcium ions for activation. To study metacaspase activity in plants, we developed an in vitro chemical screen to identify small molecule metacaspase inhibitors and found several hits with a minimal thioxodihydropyrimidine-dione structure, of which some are specific AtMCA-IIf inhibitors. We provide mechanistic insight into the basis of inhibition by the TDP-containing compounds through molecular docking onto the AtMCA-IIf crystal structure. Finally, a TDP-containing compound (TDP6) effectively hampered lateral root emergence in vivo, probably through inhibition of metacaspases specifically expressed in the endodermal cells overlying developing lateral root primordia. In the future, the small compound inhibitors and crystal structure of AtMCA-IIf can be used to study metacaspases in other species, such as important human pathogens, including those causing neglected diseases.

Place, publisher, year, edition, pages
Proceedings of the National Academy of Sciences (PNAS), 2023
Keywords
AtMCA-IIf crystal structure, cysteine protease, lateral root development, metacaspase, small chemical inhibitor
National Category
Plant Biotechnology
Identifiers
urn:nbn:se:umu:diva-210280 (URN)10.1073/pnas.2303480120 (DOI)001041275500007 ()37216519 (PubMedID)2-s2.0-85159833521 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation, 2018.0026Knut and Alice Wallenberg Foundation, 2021.0071
Available from: 2023-06-21 Created: 2023-06-21 Last updated: 2025-04-24Bibliographically approved
Organisations

Search in DiVA

Show all publications