Umeå University's logo

umu.sePublications
Change search
Link to record
Permanent link

Direct link
Abrahamsson, Alva
Publications (3 of 3) Show all publications
Andréasson, M., Donzel, M., Abrahamsson, A., Berner, A., Doimo, M., Quiroga, A., . . . Chorell, E. (2024). Exploring the dispersion and electrostatic components in arene-arene interactions between ligands and G4 DNA to develop G4-ligands. Journal of Medicinal Chemistry, 67(3), 2202-2219
Open this publication in new window or tab >>Exploring the dispersion and electrostatic components in arene-arene interactions between ligands and G4 DNA to develop G4-ligands
Show others...
2024 (English)In: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 67, no 3, p. 2202-2219Article in journal (Refereed) Published
Abstract [en]

G-Quadruplex (G4) DNA structures are important regulatory elements in central biological processes. Small molecules that selectively bind and stabilize G4 structures have therapeutic potential, and there are currently >1000 known G4 ligands. Despite this, only two G4 ligands ever made it to clinical trials. In this work, we synthesized several heterocyclic G4 ligands and studied their interactions with G4s (e.g., G4s from the c-MYC, c-KIT, and BCL-2 promoters) using biochemical assays. We further studied the effect of selected compounds on cell viability, the effect on the number of G4s in cells, and their pharmacokinetic properties. This identified potent G4 ligands with suitable properties and further revealed that the dispersion component in arene-arene interactions in combination with electron-deficient electrostatics is central for the ligand to bind with the G4 efficiently. The presented design strategy can be applied in the further development of G4-ligands with suitable properties to explore G4s as therapeutic targets.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2024
National Category
Medicinal Chemistry
Identifiers
urn:nbn:se:umu:diva-220319 (URN)10.1021/acs.jmedchem.3c02127 (DOI)38241609 (PubMedID)2-s2.0-85183093324 (Scopus ID)
Funder
The Kempe Foundations, JCK-3159The Kempe Foundations, SMK-1632Swedish Research Council, 2017-05235Swedish Research Council, 2021-04805Knut and Alice Wallenberg Foundation
Available from: 2024-02-13 Created: 2024-02-13 Last updated: 2024-02-13Bibliographically approved
Doimo, M., Chaudhari, N., Abrahamsson, S., L'Hôte, V., Nguyen, T. V. H., Berner, A., . . . Wanrooij, S. (2023). Enhanced mitochondrial G-quadruplex formation impedes replication fork progression leading to mtDNA loss in human cells. Nucleic Acids Research, 51(14), 7392-7408
Open this publication in new window or tab >>Enhanced mitochondrial G-quadruplex formation impedes replication fork progression leading to mtDNA loss in human cells
Show others...
2023 (English)In: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 51, no 14, p. 7392-7408Article in journal (Refereed) Published
Abstract [en]

Mitochondrial DNA (mtDNA) replication stalling is considered an initial step in the formation of mtDNA deletions that associate with genetic inherited disorders and aging. However, the molecular details of how stalled replication forks lead to mtDNA deletions accumulation are still unclear. Mitochondrial DNA deletion breakpoints preferentially occur at sequence motifs predicted to form G-quadruplexes (G4s), four-stranded nucleic acid structures that can fold in guanine-rich regions. Whether mtDNA G4s form in vivo and their potential implication for mtDNA instability is still under debate. In here, we developed new tools to map G4s in the mtDNA of living cells. We engineered a G4-binding protein targeted to the mitochondrial matrix of a human cell line and established the mtG4-ChIP method, enabling the determination of mtDNA G4s under different cellular conditions. Our results are indicative of transient mtDNA G4 formation in human cells. We demonstrate that mtDNA-specific replication stalling increases formation of G4s, particularly in the major arc. Moreover, elevated levels of G4 block the progression of the mtDNA replication fork and cause mtDNA loss. We conclude that stalling of the mtDNA replisome enhances mtDNA G4 occurrence, and that G4s not resolved in a timely manner can have a negative impact on mtDNA integrity.

Place, publisher, year, edition, pages
Oxford University Press, 2023
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:umu:diva-214069 (URN)10.1093/nar/gkad535 (DOI)001030190900001 ()37351621 (PubMedID)2-s2.0-85168980694 (Scopus ID)
Funder
Knut and Alice Wallenberg FoundationSwedish Research Council, VR-MH 2018-0278Swedish Research Council, VR-NT 2017-05235The Kempe Foundations, SMK-1632Wenner-Gren FoundationsEU, Horizon 2020, 751474Swedish Foundation for Strategic Research, RIF14-0081
Available from: 2023-09-05 Created: 2023-09-05 Last updated: 2023-09-05Bibliographically approved
Berner, A., Das, R. N., Bhuma, N., Golebiewska, J., Abrahamsson, A., Andréasson, M., . . . Chorell, E. (2023). G4-ligand-conjugated oligonucleotides mediate selective binding and stabilization of individual G4 DNA structures. Journal of the American Chemical Society, 146(10), 6926-6935
Open this publication in new window or tab >>G4-ligand-conjugated oligonucleotides mediate selective binding and stabilization of individual G4 DNA structures
Show others...
2023 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 146, no 10, p. 6926-6935Article in journal (Refereed) Published
Abstract [en]

G-quadruplex (G4) DNA structures are prevalent secondary DNA structures implicated in fundamental cellular functions, such as replication and transcription. Furthermore, G4 structures are directly correlated to human diseases such as cancer and have been highlighted as promising therapeutic targets for their ability to regulate disease-causing genes, e.g., oncogenes. Small molecules that bind and stabilize these structures are thus valuable from a therapeutic perspective and helpful in studying the biological functions of the G4 structures. However, there are hundreds of thousands of G4 DNA motifs in the human genome, and a long-standing problem in the field is how to achieve specificity among these different G4 structures. Here, we developed a strategy to selectively target an individual G4 DNA structure. The strategy is based on a ligand that binds and stabilizes G4s without selectivity, conjugated to a guide oligonucleotide, that specifically directs the G4-Ligand-conjugated oligo (GL-O) to the single target G4 structure. By employing various biophysical and biochemical techniques, we show that the developed method enables the targeting of a unique, specific G4 structure without impacting other off-target G4 formations. Considering the vast amount of G4s in the human genome, this represents a promising strategy to study the presence and functions of individual G4s but may also hold potential as a future therapeutic modality.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2023
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
urn:nbn:se:umu:diva-222294 (URN)10.1021/jacs.3c14408 (DOI)001179314400001 ()38430200 (PubMedID)2-s2.0-85186374110 (Scopus ID)
Funder
The Kempe Foundations, JCK-3159The Kempe Foundations, SMK-1632The Kempe Foundations, SMK21-0059Swedish Research Council, 2017-05235Swedish Research Council, 2021-04805Swedish Research Council, 2018-0278Cancerforskningsfonden i Norrland, AMP19-968Knut and Alice Wallenberg Foundation, SMK21-0059
Available from: 2024-03-20 Created: 2024-03-20 Last updated: 2024-03-20Bibliographically approved
Organisations

Search in DiVA

Show all publications