Umeå University's logo

umu.sePublications
Change search
Link to record
Permanent link

Direct link
Rosina, Andrea
Publications (4 of 4) Show all publications
Hjältén, A., Silva de Oliveira, V., Silander, I., Rosina, A., Rey, M., Rutkowski, L., . . . Foltynowicz, A. (2024). Measurement and assignment of J = 5 to 9 rotational energy levels in the 9070-9370 cm-1 range of methane using optical frequency comb double-resonance spectroscopy. Journal of Chemical Physics, 161(12), Article ID 124311.
Open this publication in new window or tab >>Measurement and assignment of J = 5 to 9 rotational energy levels in the 9070-9370 cm-1 range of methane using optical frequency comb double-resonance spectroscopy
Show others...
2024 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 161, no 12, article id 124311Article in journal (Refereed) Published
Abstract [en]

We use optical-optical double-resonance spectroscopy with a continuous wave (CW) pump and a cavity-enhanced frequency comb probe to measure the energy levels of methane in the upper part of the triacontad polyad (P6) with higher rotational quantum numbers than previously assigned. A high-power CW optical parametric oscillator, tunable around 3000 cm-1, is consecutively locked to the P(7, A2), Q(7, A2), R(7, A2), and Q(6, F2) transitions in the ν3 band, and a comb covering the 5800-6100 cm-1 range probes sub-Doppler ladder-type transitions from the pumped levels with J' = 6 to 8, respectively. We report 118 probe transitions in the 3ν3 ← ν3 spectral range with uncertainties down to 300 kHz (1 × 10-5 cm-1), reaching 84 unique final states in the 9070-9370 cm-1 range with rotational quantum numbers J between 5 and 9. We assign these states using combination differences and by comparison with theoretical predictions from a new ab initio-based effective Hamiltonian and dipole moment operator. This is the first line-by-line experimental verification of theoretical predictions for these hot-band transitions, and we find a better agreement of transition wavenumbers with the new calculations compared to the TheoReTS/HITEMP and ExoMol databases. We also compare the relative intensities and find an overall good agreement with all three sets of predictions. Finally, we report the wavenumbers of 27 transitions in the 2ν3 spectral range, observed as V-type transitions from the ground state, and compare them to the new Hamiltonian, HITRAN2020, ExoMol, and the WKMLC line lists.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2024
National Category
Atom and Molecular Physics and Optics Condensed Matter Physics
Identifiers
urn:nbn:se:umu:diva-230601 (URN)10.1063/5.0223447 (DOI)001325268300006 ()39344886 (PubMedID)2-s2.0-85205336191 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation, KAW 2020.0303Swedish Research Council, 2020-00238
Available from: 2024-10-08 Created: 2024-10-08 Last updated: 2025-04-24Bibliographically approved
Zakrisson, J., Silander, I., Silva de Oliveira, V., Hjältén, A., Rosina, A., Rubin, T., . . . Axner, O. (2024). Procedure for automated low uncertainty assessment of empty cavity mode frequencies in Fabry-Pérot cavity based refractometry. Optics Express, 32(3), 3959-3973
Open this publication in new window or tab >>Procedure for automated low uncertainty assessment of empty cavity mode frequencies in Fabry-Pérot cavity based refractometry
Show others...
2024 (English)In: Optics Express, E-ISSN 1094-4087, Vol. 32, no 3, p. 3959-3973Article in journal (Refereed) Published
Abstract [en]

A procedure for automated low uncertainty assessment of empty cavity mode frequencies in Fabry-Pérot cavity based refractometry that does not require access to laser frequency measuring instrumentation is presented. It requires a previously well-characterized system regarding mirror phase shifts, Gouy phase, and mode number, and is based on the fact that the assessed refractivity should not change when mode jumps take place. It is demonstrated that the procedure is capable of assessing mode frequencies with an uncertainty of 30 MHz, which, when assessing pressure of nitrogen, corresponds to an uncertainty of 0.3 mPa.

National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:umu:diva-220868 (URN)10.1364/OE.513708 (DOI)001199850900004 ()38297605 (PubMedID)2-s2.0-85183822866 (Scopus ID)
Funder
Swedish Research Council, 2020-00238Swedish Research Council, 2020-05105Knut and Alice Wallenberg Foundation, 2020.0303Umeå University, IDS-18Vinnova, 2018-04570
Available from: 2024-02-19 Created: 2024-02-19 Last updated: 2025-04-24Bibliographically approved
Hjältén, A., Silva de Oliveira, V., Silander, I., Rosina, A., Rutkowski, L., Sobon, G., . . . Foltynowicz, A. (2023). Accurate measurement and assignment of high rotational energy levels of the 3v3 ← v3 band of methane. In: 2023 conference on lasers and electro-optics, CLEO 2023: . Paper presented at 2023 Conference on Lasers and Electro-Optics, CLEO 2023, San Jose, May 7-12, 2023. IEEE, Article ID STh4L.4.
Open this publication in new window or tab >>Accurate measurement and assignment of high rotational energy levels of the 3v3 ← v3 band of methane
Show others...
2023 (English)In: 2023 conference on lasers and electro-optics, CLEO 2023, IEEE, 2023, article id STh4L.4Conference paper, Published paper (Refereed)
Abstract [en]

We use optical-optical double-resonance spectroscopy with a high-power continuous wave pump and a cavity-enhanced comb probe to expand sub-Doppler measurements of the 3v3 ← v3 band of CH4 to higher rotational levels. We assign the final states using combination differences, i.e., by reaching the same state using different pump/probe combinations.

Place, publisher, year, edition, pages
IEEE, 2023
Series
Quantum Electronics and Laser Science, ISSN 2160-8989
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:umu:diva-217340 (URN)2-s2.0-85176362960 (Scopus ID)9781957171258 (ISBN)9781665455688 (ISBN)
Conference
2023 Conference on Lasers and Electro-Optics, CLEO 2023, San Jose, May 7-12, 2023
Available from: 2023-12-04 Created: 2023-12-04 Last updated: 2023-12-04Bibliographically approved
Hjältén, A., Silva de Oliveira, V., Silander, I., Rosina, A., Rutkowski, L., Soboń, G., . . . Foltynowicz, A. (2023). Accurate measurement and assignment of high rotational energy levels of the 3ν3 ← ν3 band of methane. In: CLEO 2023: . Paper presented at 2023 Conference on Lasers and Electro-Optics (Science and Innovations), CLEO 2023, San Jose, May 7-12, 2023. Optical Society of America
Open this publication in new window or tab >>Accurate measurement and assignment of high rotational energy levels of the 3ν3 ← ν3 band of methane
Show others...
2023 (English)In: CLEO 2023, Optical Society of America, 2023Conference paper, Published paper (Refereed)
Abstract [en]

We use optical-optical double-resonance spectroscopy with a high-power continuous wave pump and a cavity-enhanced comb probe to expand sub-Doppler measurements of the 3ν3←ν3 band of CH4 to higher rotational levels. We assign the final states using combination differences, i.e., by reaching the same state using different pump/probe combinations.

Place, publisher, year, edition, pages
Optical Society of America, 2023
Series
Technical Digest Serie
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:umu:diva-224115 (URN)10.1364/CLEO_SI.2023.STh4L.4 (DOI)2-s2.0-85191524330 (Scopus ID)9781957171258 (ISBN)
Conference
2023 Conference on Lasers and Electro-Optics (Science and Innovations), CLEO 2023, San Jose, May 7-12, 2023
Available from: 2024-05-27 Created: 2024-05-27 Last updated: 2024-05-27Bibliographically approved
Organisations

Search in DiVA

Show all publications