Umeå University's logo

umu.sePublications
Change search
Link to record
Permanent link

Direct link
Grundström, Christin
Publications (10 of 25) Show all publications
Hainzl, T., Scortti, M., Lindgren, C., Grundström, C., Krypotou, E., Vázquez-Boland, J. A. & Sauer-Eriksson, A. E. (2025). Structural basis of promiscuous inhibition of Listeria virulence activator PrfA by oligopeptides. Cell Reports, 44(2), Article ID 115290.
Open this publication in new window or tab >>Structural basis of promiscuous inhibition of Listeria virulence activator PrfA by oligopeptides
Show others...
2025 (English)In: Cell Reports, ISSN 2639-1856, E-ISSN 2211-1247, Vol. 44, no 2, article id 115290Article in journal (Refereed) Published
Abstract [en]

The facultative pathogen Listeria monocytogenes uses a master regulator, PrfA, to tightly control the fitness-costly expression of its virulence factors. We found that PrfA activity is repressed via competitive occupancy of the binding site for the PrfA-activating cofactor, glutathione, by exogenous nutritional oligopeptides. The inhibitory peptides show different sequence and physicochemical properties, but how such a wide variety of oligopeptides can bind PrfA was unclear. Using crystal structure analysis of PrfA complexed with inhibitory tri- and tetrapeptides, we show here that the binding promiscuity is due to the ability of PrfA β5 in the glutathione-binding inter-domain tunnel to establish parallel or antiparallel β sheet-like interactions with the peptide backbone. Spacious tunnel pockets provide additional flexibility for unspecific peptide accommodation while providing selectivity for hydrophobic residues. Hydrophobic contributions from two adjacent peptide residues appear to be critical for efficient PrfA inhibitory binding. In contrast to glutathione, peptide binding prevents the conformational change required for the correct positioning of the DNA-binding helix-turn-helix motifs of PrfA, effectively inhibiting virulence gene expression.

Place, publisher, year, edition, pages
Elsevier, 2025
Keywords
CP: Microbiology, crystal structures of PrfA in complex with oligopeptides, Listeria pathogenesis, Listeria virulence regulation, non-specific oligopeptide-protein binding, oligopeptide-mediated PrfA regulation, peptide-glutathione competitive binding to PrfA, peptide-mediated transcription factor regulation, PrfA allosteric control, PrfA-peptide 3D structure analysis, promiscuous PrfA inhibition by oligopeptides
National Category
Biochemistry Molecular Biology
Identifiers
urn:nbn:se:umu:diva-235844 (URN)10.1016/j.celrep.2025.115290 (DOI)001428945700001 ()2-s2.0-85217797793 (Scopus ID)
Funder
Swedish Research Council, 2015-03607Swedish Research Council, 2019-03771Swedish Research Council, 2018-07152The Kempe FoundationsFamiljen Erling-Perssons StiftelseVinnova, 2018-04969Swedish Research Council Formas, 2019-02496
Available from: 2025-02-25 Created: 2025-02-25 Last updated: 2025-04-24Bibliographically approved
Nam, K., Arattu Thodika, A. R., Grundström, C., Sauer, U. H. & Wolf-Watz, M. (2024). Elucidating dynamics of Adenylate kinase from enzyme opening to ligand release. Journal of Chemical Information and Modeling, 64(1), 150-163
Open this publication in new window or tab >>Elucidating dynamics of Adenylate kinase from enzyme opening to ligand release
Show others...
2024 (English)In: Journal of Chemical Information and Modeling, ISSN 1549-9596, E-ISSN 1549-960X, Vol. 64, no 1, p. 150-163Article in journal (Refereed) Published
Abstract [en]

This study explores ligand-driven conformational changes in adenylate kinase (AK), which is known for its open-to-close conformational transitions upon ligand binding and release. By utilizing string free energy simulations, we determine the free energy profiles for both enzyme opening and ligand release and compare them with profiles from the apoenzyme. Results reveal a three-step ligand release process, which initiates with the opening of the adenosine triphosphate-binding subdomain (ATP lid), followed by ligand release and concomitant opening of the adenosine monophosphate-binding subdomain (AMP lid). The ligands then transition to nonspecific positions before complete dissociation. In these processes, the first step is energetically driven by ATP lid opening, whereas the second step is driven by ATP release. In contrast, the AMP lid opening and its ligand release make minor contributions to the total free energy for enzyme opening. Regarding the ligand binding mechanism, our results suggest that AMP lid closure occurs via an induced-fit mechanism triggered by AMP binding, whereas ATP lid closure follows conformational selection. This difference in the closure mechanisms provides an explanation with implications for the debate on ligand-driven conformational changes of AK. Additionally, we determine an X-ray structure of an AK variant that exhibits significant rearrangements in the stacking of catalytic arginines, explaining its reduced catalytic activity. In the context of apoenzyme opening, the sequence of events is different. Here, the AMP lid opens first while the ATP lid remains closed, and the free energy associated with ATP lid opening varies with orientation, aligning with the reported AK opening and closing rate heterogeneity. Finally, this study, in conjunction with our previous research, provides a comprehensive view of the intricate interplay between various structural elements, ligands, and catalytic residues that collectively contribute to the robust catalytic power of the enzyme.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2024
National Category
Organic Chemistry
Identifiers
urn:nbn:se:umu:diva-219745 (URN)10.1021/acs.jcim.3c01618 (DOI)001138370500001 ()38117131 (PubMedID)2-s2.0-85181026300 (Scopus ID)
Funder
NIH (National Institutes of Health)
Available from: 2024-01-24 Created: 2024-01-24 Last updated: 2025-04-24Bibliographically approved
Verma, A., Åberg-Zingmark, E., Sparrman, T., Ul Mushtaq, A., Rogne, P., Grundström, C., . . . Wolf-Watz, M. (2022). Insights into the evolution of enzymatic specificity and catalysis: from Asgard archaea to human adenylate kinases [Letter to the editor]. Science Advances, 8(44), Article ID eabm4089.
Open this publication in new window or tab >>Insights into the evolution of enzymatic specificity and catalysis: from Asgard archaea to human adenylate kinases
Show others...
2022 (English)In: Science Advances, E-ISSN 2375-2548, Vol. 8, no 44, article id eabm4089Article in journal, Letter (Refereed) Published
Abstract [en]

Enzymatic catalysis is critically dependent on selectivity, active site architecture, and dynamics. To contribute insights into the interplay of these properties, we established an approach with NMR, crystallography, and MD simulations focused on the ubiquitous phosphotransferase adenylate kinase (AK) isolated from Odinarchaeota (OdinAK). Odinarchaeota belongs to the Asgard archaeal phylum that is believed to be the closest known ancestor to eukaryotes. We show that OdinAK is a hyperthermophilic trimer that, contrary to other AK family members, can use all NTPs for its phosphorylation reaction. Crystallographic structures of OdinAK-NTP complexes revealed a universal NTP-binding motif, while 19F NMR experiments uncovered a conserved and rate-limiting dynamic signature. As a consequence of trimerization, the active site of OdinAK was found to be lacking a critical catalytic residue and is therefore considered to be "atypical." On the basis of discovered relationships with human monomeric homologs, our findings are discussed in terms of evolution of enzymatic substrate specificity and cold adaptation.

Place, publisher, year, edition, pages
American Association for the Advancement of Science (AAAS), 2022
National Category
Biochemistry Molecular Biology
Research subject
Biochemistry
Identifiers
urn:nbn:se:umu:diva-201106 (URN)10.1126/sciadv.abm4089 (DOI)000918406800003 ()36332013 (PubMedID)2-s2.0-85141889911 (Scopus ID)
Funder
Swedish Research Council, 2017-04203Swedish Research Council, 2019-03771Swedish Research Council, 2016-03599Knut and Alice Wallenberg Foundation, 2016-03599The Kempe Foundations, SMK-1869Carl Tryggers foundation , 17.504NIH (National Institutes of Health), (R01GM132481
Note

The Protein Expertise Platform (PEP) at the Umeå University is acknowledged for providing reagents for protein production, and M. Lindberg at PEP is appreciated for preparation of plasmids. We acknowledge MAX IV Laboratory (Lund, Sweden) for time on BioMAX and DESY (Hamburg, Germany) for time on PETRA-3. All NMR experiments were performed at the Swedish NMR Center at Umeå University. We also acknowledge the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N) and the National Energy Research Scientific Computing Center (NERSC) for computational resources.

Available from: 2022-11-19 Created: 2022-11-19 Last updated: 2025-02-20Bibliographically approved
Ojeda-May, P., Ul Mushtaq, A., Rogne, P., Verma, A., Ovchinnikov, V., Grundström, C., . . . Nam, K. (2021). Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions. Biochemistry, 60(28), 2246-2258
Open this publication in new window or tab >>Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions
Show others...
2021 (English)In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 60, no 28, p. 2246-2258Article in journal (Refereed) Published
Abstract [en]

Enzymes employ a wide range of protein motions to achieve efficient catalysis of chemical reactions. While the role of collective protein motions in substrate binding, product release, and regulation of enzymatic activity is generally understood, their roles in catalytic steps per se remain uncertain. Here, molecular dynamics simulations, enzyme kinetics, X-ray crystallography, and nuclear magnetic resonance spectroscopy are combined to elucidate the catalytic mechanism of adenylate kinase and to delineate the roles of catalytic residues in catalysis and the conformational change in the enzyme. This study reveals that the motions in the active site, which occur on a time scale of picoseconds to nanoseconds, link the catalytic reaction to the slow conformational dynamics of the enzyme by modulating the free energy landscapes of subdomain motions. In particular, substantial conformational rearrangement occurs in the active site following the catalytic reaction. This rearrangement not only affects the reaction barrier but also promotes a more open conformation of the enzyme after the reaction, which then results in an accelerated opening of the enzyme compared to that of the reactant state. The results illustrate a linkage between enzymatic catalysis and collective protein motions, whereby the disparate time scales between the two processes are bridged by a cascade of intermediate-scale motion of catalytic residues modulating the free energy landscapes of the catalytic and conformational change processes.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2021
National Category
Biochemistry Molecular Biology
Identifiers
urn:nbn:se:umu:diva-187197 (URN)10.1021/acs.biochem.1c00221 (DOI)000677482100003 ()34250801 (PubMedID)2-s2.0-85111203330 (Scopus ID)
Available from: 2021-09-08 Created: 2021-09-08 Last updated: 2025-02-20Bibliographically approved
Hansen, S., Hall, M., Grundström, C., Brännström, K., Sauer-Eriksson, A. E. & Johansson, J. (2020). A Novel Growth-Based Selection Strategy Identifies New Constitutively Active Variants of the Major Virulence Regulator PrfA in Listeria monocytogenes. Journal of Bacteriology, 202(11), Article ID e00115-20.
Open this publication in new window or tab >>A Novel Growth-Based Selection Strategy Identifies New Constitutively Active Variants of the Major Virulence Regulator PrfA in Listeria monocytogenes
Show others...
2020 (English)In: Journal of Bacteriology, ISSN 0021-9193, E-ISSN 1098-5530, Vol. 202, no 11, article id e00115-20Article in journal (Refereed) Published
Abstract [en]

Listeria monocytogenes is a Gram-positive pathogen able to cause severe human infections. Its major virulence regulator is the transcriptional activator PrfA, a member of the Crp/Fnr family of transcriptional regulators. To establish a successful L. monocytogenes infection, the PrfA protein needs to be in an active conformation, either by binding the cognate inducer glutathione (GSH) or by possessing amino acid substitutions rendering the protein constitutively active (PrfA*). By a yet unknown mechanism, phosphotransferase system (PTS) sugars repress the activity of PrfA. We therefore took a transposon-based approach to identify the mechanism by which PTS sugars repress PrfA activity. For this, we screened a transposon mutant bank to identify clones able to grow in the presence of glucose-6-phosphate as the sole carbon source. Surprisingly, most of the isolated transposon mutants also carried amino acid substitutions in PrfA. In transposon-free strains, the PrfA amino acid substitution mutants displayed growth, virulence factor expression, infectivity, and DNA binding, agreeing with previously identified PrIA* mutants. Hence, the initial growth phenotype observed in the isolated clone was due to the amino acid substitution in PrfA and unrelated to the loci inactivated by the transposon mutant. Finally, we provide structural evidence for the existence of an intermediately activated PrfA state, which gives new insights into PrfA protein activation. IMPORTANCE The Gram-positive bacterium Listeria monocytogenes is a human pathogen affecting mainly the elderly, immunocompromised people, and pregnant women. It can lead to meningoencephalitis, septicemia, and abortion. The major virulence regulator in L. monocytogenes is the PrfA protein, a transcriptional activator. Using a growth-based selection strategy, we identified mutations in the PrfA protein leading to constitutively active virulence factor expression. We provide structural evidence for the existence of an intermediately activated PrfA state, which gives new insights into PrfA protein activation.

Place, publisher, year, edition, pages
American Society for Microbiology, 2020
Keywords
Listeria monocytogenes, PrfA, PrfA*, crystal structure, LLO, ActA
National Category
Biochemistry Molecular Biology
Identifiers
urn:nbn:se:umu:diva-171908 (URN)10.1128/JB.00115-20 (DOI)000532732400005 ()32179627 (PubMedID)2-s2.0-85084695335 (Scopus ID)
Available from: 2020-06-17 Created: 2020-06-17 Last updated: 2025-02-20Bibliographically approved
Rogne, P., Dulko-Smith, B., Goodman, J., Rosselin, M., Grundström, C., Hedberg, C., . . . Wolf-Watz, M. (2020). Structural Basis for GTP versus ATP Selectivity in the NMP Kinase AK3. Biochemistry, 59(38), 3570-3581
Open this publication in new window or tab >>Structural Basis for GTP versus ATP Selectivity in the NMP Kinase AK3
Show others...
2020 (English)In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 59, no 38, p. 3570-3581Article in journal (Refereed) Published
Abstract [en]

ATP and GTP are exceptionally important molecules in biology with multiple, and often discrete, functions. Therefore, enzymes that bind to either of them must develop robust mechanisms to selectively utilize one or the other. Here, this specific problem is addressed by molecular studies of the human NMP kinase AK3, which uses GTP to phosphorylate AMP. AK3 plays an important role in the citric acid cycle, where it is responsible for GTP/GDP recycling. By combining a structural biology approach with functional experiments, we present a comprehensive structural and mechanistic understanding of the enzyme. We discovered that AK3 functions by recruitment of GTP to the active site, while ATP is rejected and nonproductively bound to the AMP binding site. Consequently, ATP acts as an inhibitor with respect to GTP and AMP. The overall features with specific recognition of the correct substrate and nonproductive binding by the incorrect substrate bear a strong similarity to previous findings for the ATP specific NMP kinase adenylate kinase. Taken together, we are now able to provide the fundamental principles for GTP and ATP selectivity in the large NMP kinase family. As a side-result originating from nonlinearity of chemical shifts in GTP and ATP titrations, we find that protein surfaces offer a general and weak binding affinity for both GTP and ATP. These nonspecific interactions likely act to lower the available intracellular GTP and ATP concentrations and may have driven evolution of the Michaelis constants of NMP kinases accordingly.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2020
National Category
Biochemistry Molecular Biology
Identifiers
urn:nbn:se:umu:diva-176305 (URN)10.1021/acs.biochem.0c00549 (DOI)000576743500007 ()32822537 (PubMedID)2-s2.0-85091890831 (Scopus ID)
Available from: 2020-11-04 Created: 2020-11-04 Last updated: 2025-02-20Bibliographically approved
Krypotou, E., Scortti, M., Grundström, C., Oelker, M., Luisi, B. F., Sauer-Eriksson, A. E. & Vazquez-Boland, J. (2019). Control of Bacterial Virulence through the Peptide Signature of the Habitat. Cell Reports, 26(7), 1815-1827
Open this publication in new window or tab >>Control of Bacterial Virulence through the Peptide Signature of the Habitat
Show others...
2019 (English)In: Cell Reports, E-ISSN 2211-1247, Vol. 26, no 7, p. 1815-1827Article in journal (Refereed) Published
Abstract [en]

To optimize fitness, pathogens selectively activate their virulence program upon host entry. Here, we report that the facultative intracellular bacterium Listeria monocytogenes exploits exogenous oligopeptides, a ubiquitous organic N source, to sense the environment and control the activity of its virulence transcriptional activator, PrfA. Using a genetic screen in adsorbent- treated ( PrfA-inducing) medium, we found that PrfA is functionally regulated by the balance between activating and inhibitory nutritional peptides scavenged via the Opp transport system. Activating peptides provide essential cysteine precursor for the PrfA-inducing cofactor glutathione ( GSH). Non-cysteine-containing peptides cause promiscuous PrfA inhibition. Biophysical and co-crystallization studies reveal that peptides inhibit PrfA through steric blockade of the GSH binding site, a regulation mechanism directly linking bacterial virulence and metabolism. L. monocytogenes mutant analysis in macrophages and our functional data support a model in which changes in the balance of antagonistic Oppimported oligopeptides promote PrfA induction intra-cellularly and PrfA repression outside the host.

Place, publisher, year, edition, pages
Elsevier, 2019
National Category
Biochemistry Molecular Biology
Identifiers
urn:nbn:se:umu:diva-156873 (URN)10.1016/j.celrep.2019.01.073 (DOI)000458403600013 ()30759392 (PubMedID)2-s2.0-85060870276 (Scopus ID)
Available from: 2019-03-11 Created: 2019-03-11 Last updated: 2025-02-20Bibliographically approved
Rogne, P., Andersson, D., Grundström, C., Sauer-Eriksson, E., Linusson, A. & Wolf-Watz, M. (2019). Nucleation of an Activating Conformational Change by a Cation−Π Interaction. Biochemistry, 58(32), 3408-3412
Open this publication in new window or tab >>Nucleation of an Activating Conformational Change by a Cation−Π Interaction
Show others...
2019 (English)In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 58, no 32, p. 3408-3412Article in journal (Refereed) Published
Abstract [en]

As a key molecule in biology, adenosine triphosphate (ATP) has numerous crucial functions in, for instance, energetics, post-translational modifications, nucleotide biosynthesis, and cofactor metabolism. Here, we have discovered an intricate interplay between the enzyme adenylate kinase and its substrate ATP. The side chain of an arginine residue was found to be an efficient sensor of the aromatic moiety of ATP through the formation of a strong cation−π interaction. In addition to recognition, the interaction was found to have dual functionality. First, it nucleates the activating conformational transition of the ATP binding domain and also affects the specificity in the distant AMP binding domain. In light of the functional consequences resulting from the cation−π interaction, it is possible that the mode of ATP recognition may be a useful tool in enzyme design.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2019
National Category
Organic Chemistry Biochemistry Molecular Biology
Identifiers
urn:nbn:se:umu:diva-162099 (URN)10.1021/acs.biochem.9b00538 (DOI)000480827100002 ()31339702 (PubMedID)2-s2.0-85070652179 (Scopus ID)
Available from: 2019-08-14 Created: 2019-08-14 Last updated: 2025-02-20Bibliographically approved
Zhang, J., Grundström, C., Brännström, K., Iakovleva, I., Lindberg, M. J., Olofsson, A., . . . Sauer-Eriksson, A. E. (2018). Interspecies variation between fish and human transthyretins in their binding of thyroid-disrupting chemicals. Environmental Science and Technology, 52(20), 11865-11874
Open this publication in new window or tab >>Interspecies variation between fish and human transthyretins in their binding of thyroid-disrupting chemicals
Show others...
2018 (English)In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 52, no 20, p. 11865-11874Article in journal (Refereed) Published
Abstract [en]

Thyroid-disrupting chemicals (TDCs) are xenobiotics that can interfere with the endocrine system and cause adverse effects in organisms and their offspring. TDCs affect both the thyroid gland and regulatory enzymes associated with thyroid hormone homeostasis. Transthyretin (TTR) is found in the serum and cerebrospinal fluid of vertebrates, where it transports thyroid hormones. Here, we explored the interspecies variation in TDC binding to human and fish TTR (exemplified by Gilthead seabream (Sparus aurata)). The in vitro binding experiments showed that TDCs bind with equal or weaker affinity to seabream TTR than to the human TTR, in particular, the polar TDCs (>500-fold lower affinity). Crystal structures of the seabream TTR TDC complexes revealed that all TDCs bound at the thyroid binding sites. However, amino acid substitution of Ser117 in human TTR to Thr117 in seabream prevented polar TDCs from binding deep in the hormone binding cavity, which explains their low affinity to seabream TTR Molecular dynamics and in silico alanine scanning simulation also suggested that the protein backbone of seabream TTR is more rigid than the human one and that Thr117 provides fewer electrostatic contributions than Ser117 to ligand binding. This provides an explanation for the weaker affinities of the ligands that rely on electrostatic interactions with Thr117. The lower affinities of TDCs to fish TTR, in particular the polar ones, could potentially lead to milder thyroid-related effects in fish.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2018
National Category
Biochemistry Molecular Biology
Identifiers
urn:nbn:se:umu:diva-153704 (URN)10.1021/acs.est.8b03581 (DOI)000447816100046 ()30226982 (PubMedID)2-s2.0-85054403358 (Scopus ID)
Funder
Swedish Research Council Formas, 210-2012-131Swedish Research Council, 521-2011-6427Swedish Research Council, 2015-03607
Available from: 2018-12-05 Created: 2018-12-05 Last updated: 2025-02-20Bibliographically approved
Rogne, P., Rosselin, M., Grundström, C., Hedberg, C., H. Sauer, U. & Wolf-Watz, M. (2018). Molecular mechanism of ATP versus GTP selectivity of adenylate kinase. Proceedings of the National Academy of Sciences of the United States of America, 115(12), 3012-3017
Open this publication in new window or tab >>Molecular mechanism of ATP versus GTP selectivity of adenylate kinase
Show others...
2018 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 115, no 12, p. 3012-3017Article in journal (Refereed) Published
Abstract [en]

Enzymatic substrate selectivity is critical for the precise control of metabolic pathways. In cases where chemically related substrates are present inside cells, robust mechanisms of substrate selectivity are required. Here, we report the mechanism utilized for catalytic ATP versus GTP selectivity during adenylate kinase (Adk) -mediated phosphorylation of AMP. Using NMR spectroscopy we found that while Adk adopts a catalytically competent and closed structural state in complex with ATP, the enzyme is arrested in a catalytically inhibited and open state in complex with GTP. X-ray crystallography experiments revealed that the interaction interfaces supporting ATP and GTP recognition, in part, are mediated by coinciding residues. The mechanism provides an atomic view on how the cellular GTP pool is protected from Adk turnover, which is important because GTP has many specialized cellular functions. In further support of this mechanism, a structure-function analysis enabled by synthesis of ATP analogs suggests that a hydrogen bond between the adenine moiety and the backbone of the enzyme is vital for ATP selectivity. The importance of the hydrogen bond for substrate selectivity is likely general given the conservation of its location and orientation across the family of eukaryotic protein kinases.

Keywords
adenylate kinase, selectivity, ATP, GTP, mechanism
National Category
Biochemistry Molecular Biology
Identifiers
urn:nbn:se:umu:diva-145883 (URN)10.1073/pnas.1721508115 (DOI)000427829500063 ()29507216 (PubMedID)2-s2.0-85044258415 (Scopus ID)
Available from: 2018-03-20 Created: 2018-03-20 Last updated: 2025-02-20Bibliographically approved
Organisations

Search in DiVA

Show all publications