Open this publication in new window or tab >>Show others...
2023 (English)In: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 51, no 14, p. 7392-7408Article in journal (Refereed) Published
Abstract [en]
Mitochondrial DNA (mtDNA) replication stalling is considered an initial step in the formation of mtDNA deletions that associate with genetic inherited disorders and aging. However, the molecular details of how stalled replication forks lead to mtDNA deletions accumulation are still unclear. Mitochondrial DNA deletion breakpoints preferentially occur at sequence motifs predicted to form G-quadruplexes (G4s), four-stranded nucleic acid structures that can fold in guanine-rich regions. Whether mtDNA G4s form in vivo and their potential implication for mtDNA instability is still under debate. In here, we developed new tools to map G4s in the mtDNA of living cells. We engineered a G4-binding protein targeted to the mitochondrial matrix of a human cell line and established the mtG4-ChIP method, enabling the determination of mtDNA G4s under different cellular conditions. Our results are indicative of transient mtDNA G4 formation in human cells. We demonstrate that mtDNA-specific replication stalling increases formation of G4s, particularly in the major arc. Moreover, elevated levels of G4 block the progression of the mtDNA replication fork and cause mtDNA loss. We conclude that stalling of the mtDNA replisome enhances mtDNA G4 occurrence, and that G4s not resolved in a timely manner can have a negative impact on mtDNA integrity.
Place, publisher, year, edition, pages
Oxford University Press, 2023
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:umu:diva-214069 (URN)10.1093/nar/gkad535 (DOI)001030190900001 ()37351621 (PubMedID)2-s2.0-85168980694 (Scopus ID)
Funder
Knut and Alice Wallenberg FoundationSwedish Research Council, VR-MH 2018-0278Swedish Research Council, VR-NT 2017-05235The Kempe Foundations, SMK-1632Wenner-Gren FoundationsEU, Horizon 2020, 751474Swedish Foundation for Strategic Research, RIF14-0081
2023-09-052023-09-052025-04-07Bibliographically approved