Umeå University's logo

umu.sePublications
Change search
Link to record
Permanent link

Direct link
Gracia-Espino, EduardoORCID iD iconorcid.org/0000-0001-9239-0541
Alternative names
Publications (10 of 63) Show all publications
Öberg, R., Landström, L., Gracia-Espino, E., Larsson, A., Andersson, M. & Andersson, P. O. (2024). Characterization of carfentanil and thiofentanil using surface-enhanced raman spectroscopy and density functional theory. Journal of Raman Spectroscopy
Open this publication in new window or tab >>Characterization of carfentanil and thiofentanil using surface-enhanced raman spectroscopy and density functional theory
Show others...
2024 (English)In: Journal of Raman Spectroscopy, ISSN 0377-0486, E-ISSN 1097-4555Article in journal (Refereed) Epub ahead of print
Abstract [en]

Fentanyls are synthetic opioids up to 10,000 times more potent than morphine. Although initially developed for medical applications, fentanyl and its analogues have recently grown synonymous with the ongoing opioid epidemic. To combat the continued spread of these substances, there is a need for rapid and sensitive techniques for chemical detection. Surface-enhanced Raman spectroscopy (SERS) has the potential for trace detection of harmful chemical substances. However, vibrational spectra obtained by SERS often differ between SERS substrates, as well as compared with spectra from normal Raman (NR) spectroscopy. Herein, SERS and NR responses from two fentanyl analogues, carfentanil (CF) and thiofentanil (TF), were measured and analysed with support from density functional theory (DFT) modelling. Using commercially available silver nanopillar SERS substrates, the SERS signatures of samples diluted in acetonitrile between 0.01 and 1000 µg/mL were studied. Relative SERS peak intensities measured in the range of 220–1800 cm−1 vary with concentration, while SERS and NR spectra largely agree for CF at higher concentrations ((Formula presented.) 100 µg/mL). For TF, three distinct NR peaks at 262, 366 and 667 cm−1 are absent or strongly suppressed in the SERS spectrum, attributed to the lone-pair electrons of the thiophene's sulphur atom binding to the Ag surface. The concentration dependence of the Raman peak at (Formula presented.) 1000 cm−1, assigned to trigonal bending of the phenyl ring, approximately follows a Langmuir adsorption isotherm. This work elucidates similarities and differences between SERS and NR in fentanyl detection and discusses the chemical rationale behind these differences.

Place, publisher, year, edition, pages
John Wiley & Sons, 2024
Keywords
carfentanil, opioids, Raman, SERS, thiofentanil
National Category
Analytical Chemistry
Identifiers
urn:nbn:se:umu:diva-219515 (URN)10.1002/jrs.6643 (DOI)001139395600001 ()2-s2.0-85181933303 (Scopus ID)
Funder
Swedish Research Council, 2019-04016Swedish Research Council, 2018-03937The Kempe Foundations, JCK-2132
Available from: 2024-01-22 Created: 2024-01-22 Last updated: 2024-01-22
Zhang, X., Ràfols-Ribé, J., Mindemark, J., Tang, S., Lindh, M., Gracia-Espino, E., . . . Edman, L. (2024). Efficiency roll-off in light-emitting electrochemical cells. Advanced Materials
Open this publication in new window or tab >>Efficiency roll-off in light-emitting electrochemical cells
Show others...
2024 (English)In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095Article in journal (Refereed) Epub ahead of print
Abstract [en]

Understanding “efficiency roll-off” (i.e., the drop in emission efficiency with increasing current) is critical if efficient and bright emissive technologies are to be rationally designed. Emerging light-emitting electrochemical cells (LECs) can be cost- and energy-efficiently fabricated by ambient-air printing by virtue of the in situ formation of a p-n junction doping structure. However, this in situ doping transformation renders a meaningful efficiency analysis challenging. Herein, a method for separation and quantification of major LEC loss factors, notably the outcoupling efficiency and exciton quenching, is presented. Specifically, the position of the emissive p-n junction in common singlet-exciton emitting LECs is measured to shift markedly with increasing current, and the influence of this shift on the outcoupling efficiency is quantified. It is further verified that the LEC-characteristic high electrochemical-doping concentration renders singlet-polaron quenching (SPQ) significant already at low drive current density, but also that SPQ increases super-linearly with increasing current, because of increasing polaron density in the p-n junction region. This results in that SPQ dominates singlet-singlet quenching for relevant current densities, and significantly contributes to the efficiency roll-off. This method for deciphering the LEC efficiency roll-off can contribute to a rational realization of all-printed LEC devices that are efficient at highluminance.

Place, publisher, year, edition, pages
John Wiley & Sons, 2024
Keywords
efficiency roll-off, light-emitting electrochemical cell, p-n junction position, singlet-polaron quenching, singlet-singlet quenching
National Category
Atom and Molecular Physics and Optics Materials Chemistry
Identifiers
urn:nbn:se:umu:diva-220016 (URN)10.1002/adma.202310156 (DOI)001143796900001 ()38211953 (PubMedID)2-s2.0-85182424168 (Scopus ID)
Funder
Swedish Research Council, 2019-02345Swedish Research Council, 2021-04778Swedish Energy Agency, 50779-1Swedish Energy Agency, P2021-00032Bertil & Britt Svenssons Stiftelse för BelysningsteknikThe Kempe FoundationsKnut and Alice Wallenberg Foundation, KAW 2022.0381Knut and Alice Wallenberg Foundation, WISE-AP01-D02EU, European Research Council, 101096650
Available from: 2024-01-30 Created: 2024-01-30 Last updated: 2024-01-30
Rafei, M., Piñeiro-García, A., Wu, X., Perivoliotis, D. K., Wågberg, T. & Gracia-Espino, E. (2024). Hydrogen evolution mediated by sulfur vacancies and substitutional Mn in few-layered molybdenum disulfide. Materials Today Energy, 41, Article ID 101524.
Open this publication in new window or tab >>Hydrogen evolution mediated by sulfur vacancies and substitutional Mn in few-layered molybdenum disulfide
Show others...
2024 (English)In: Materials Today Energy, ISSN 2468-6069, Vol. 41, article id 101524Article in journal (Refereed) Published
Abstract [en]

MoS2 is widely praised as a promising replacement for Pt as an electrocatalyst for the hydrogen evolution reaction (HER), but even today, it still suffers from low performance. This issue is tackled by using Mn3+ as a surface modifier to trigger sulfur vacancy formation and enhance electron transport in few-layered 2H MoS2. Only 10% of Mn is sufficient to transform the semiconductive MoS2 into an active HER electrocatalyst. The insertion of Mn reduces both HER onset potential and Tafel slope which allows reaching 100 mA/cm2 at an overpotential of 206 mV, ten times larger of what undoped MoS2 can achieve. The enhanced activity arises because Mn3+ introduces electronic states near the conduction band, promotes sulfur vacancies, and increases the hydrogen adsorption. In addition to its facile production and extended shelf-life, Mn–MoS2 exhibits an efficiency of 73% at 800 mA/cm2 and 2.0 V when used in proton exchange membrane water electrolyzers.

Place, publisher, year, edition, pages
Elsevier, 2024
Keywords
Hydrogen evolution reaction, Manganese, Proton exchange membrane, Sulfur vacancy, Water electrolysis
National Category
Materials Chemistry Other Physics Topics
Identifiers
urn:nbn:se:umu:diva-221781 (URN)10.1016/j.mtener.2024.101524 (DOI)2-s2.0-85185894201 (Scopus ID)
Funder
Swedish Research Council, 2018-03937The Kempe Foundations, JCK-2132The Kempe Foundations, JCK-2021Carl Tryggers foundation , CTS 21-1581Swedish Foundation for Strategic ResearchSwedish National Infrastructure for Computing (SNIC)
Available from: 2024-03-19 Created: 2024-03-19 Last updated: 2024-03-19Bibliographically approved
Piñeiro-García, A., Wu, X., Rafei, M., Mörk, P. J. & Gracia-Espino, E. (2023). A Quaternary mixed oxide protective scaffold for ruthenium during oxygen evolution reaction in acidic media. Communications Engineering, 2(1), Article ID 28.
Open this publication in new window or tab >>A Quaternary mixed oxide protective scaffold for ruthenium during oxygen evolution reaction in acidic media
Show others...
2023 (English)In: Communications Engineering, E-ISSN 2731-3395, Vol. 2, no 1, article id 28Article in journal, Editorial material (Refereed) Published
Abstract [en]

Proton exchange membrane water electrolysis is widely used in hydrogen production, but its application is limited by significant electrocatalyst dissolution at the anode during the oxygen evolution reaction (OER). The best performing electrocatalysts to date are based on ruthenium and iridium oxides, but these experience degradation even at moderate cell potentials. Here we investigate a quaternary Sn-Sb-Mo-W mixed oxide as a protective scaffold for ruthenium oxide. The acid-stable mixed oxide consists of an interconnected network of nanostructured oxides capable of stabilizing ruthenium into the matrix (Ru-MO). In combination with titanium fibre felt, we observed a lower degradation in the oxygen evolution reaction activity compared to unprotected ruthenium oxide after the electrochemical stress test. The superior stability of Ru-MO@Ti is attributed to the presence of MO which hinders the formation of reactive higher valence ruthenium (Ru+8). Our work demonstrates the potential of multi-metal oxides to extend the lifetime of the OER active metal and the titanium support.

Place, publisher, year, edition, pages
Springer Nature, 2023
National Category
Materials Chemistry
Research subject
Materials Science
Identifiers
urn:nbn:se:umu:diva-215473 (URN)10.1038/s44172-023-00080-5 (DOI)
Funder
Swedish Research Council, 2018-03937The Kempe Foundations, JCK-2132Carl Tryggers foundation , CTS 21-1581Swedish Research Council, 2018-03937The Kempe Foundations, JCK-2132Carl Tryggers foundation , CTS 21-1581Swedish Research Council, 2018-03937The Kempe Foundations, JCK-2132Carl Tryggers foundation , CTS 21-1581
Available from: 2023-10-19 Created: 2023-10-19 Last updated: 2024-02-26Bibliographically approved
Piñeiro-García, A., Perivoliotis, D. K., Wu, X. & Gracia-Espino, E. (2023). Benchmarking molybdenum-based materials as cathode electrocatalysts for proton exchange membrane water electrolysis: can these compete with Pt?. ACS Sustainable Chemistry and Engineering, 11(20), 7641-7654
Open this publication in new window or tab >>Benchmarking molybdenum-based materials as cathode electrocatalysts for proton exchange membrane water electrolysis: can these compete with Pt?
2023 (English)In: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 11, no 20, p. 7641-7654Article in journal (Refereed) Published
Abstract [en]

Proton exchange membrane water electrolysis (PEMWE) is a promising technology to produce high-purity renewable hydrogen gas. However, its operation efficiency is highly dependent on the usage of expensive noble metals as electrocatalysts. Replacing, decreasing, or simply extending the operational lifetime of these precious metals have a positive impact on the hydrogen economy. Mo-based electrocatalysts are often praised as potential materials to replace the Pt used at the cathode to catalyse the hydrogen evolution reaction (HER). Most electrocatalytic studies are performed in traditional three-electrode cells with different operational conditions than those seen in PEM systems, making it difficult to predict the expected material’s performance under industrially relevant conditions. Therefore, we investigated the viability of using three selected Mo-based nanomaterials (1T′-MoS2, Co-MoS2, and β-Mo2C) as HER electrocatalysts in PEMWE systems. We investigated the effects of replacing Pt on the catalyst loading, charge transfer resistance, kinetics, operational stability, and hydrogen production efficiency during the PEMWE operation. In addition, we developed a methodology to identify the individual contribution of the anode and cathode kinetics in a PEMWE system, allowing to detect the cause behind the performance drop when using Mo-based electrocatalysts. Our results indicate that the electrochemical performance in three-electrode cells might not strictly predict the performance that could be achieved in PEMWE cells due to differences in interfaces and porosity of the macroscopic catalyst layers. Among the catalysts studied, 1T′-MoS2 is truly an excellent candidate to replace Pt as an HER electrocatalyst due to its low overpotential, low charge transfer resistance, and excellent durability, reaching a high efficiency of ∼75% at 1 A cm-2 and 1.94 V. Our study highlights the importance of a continuous development of efficient noble-metal free HER electrocatalysts suitable for PEMWE systems.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2023
Keywords
carbide, cobalt, electrolyser, molybdenum, proton exchange membrane, sulfide, water splitting
National Category
Other Chemical Engineering
Identifiers
urn:nbn:se:umu:diva-209305 (URN)10.1021/acssuschemeng.2c07201 (DOI)000984386300001 ()2-s2.0-85159600021 (Scopus ID)
Funder
Swedish Research Council, 2018-03937The Kempe Foundations, JCK-2132The Kempe Foundations, JCK-2021Carl Tryggers foundation , 21-1581
Available from: 2023-06-08 Created: 2023-06-08 Last updated: 2024-02-26Bibliographically approved
Kagkoura, A., Karamoschos, N., Perivoliotis, D. K., Piñeiro-García, A., Gracia-Espino, E., Tasis, D. & Tagmatarchis, N. (2023). Bifunctional nanostructured palladium/MoSx electrocatalyst for cathode hydrogen evolution reaction PEM water electrolysis and oxygen reduction reaction. Advanced Sustainable Systems, 7(5), Article ID 2200518.
Open this publication in new window or tab >>Bifunctional nanostructured palladium/MoSx electrocatalyst for cathode hydrogen evolution reaction PEM water electrolysis and oxygen reduction reaction
Show others...
2023 (English)In: Advanced Sustainable Systems, E-ISSN 2366-7486, Vol. 7, no 5, article id 2200518Article in journal (Refereed) Published
Abstract [en]

The creation of effective Pd-based architectures with numerous electrocatalytic active sites and efficient charge transfer is of key importance for improving the electrocatalytic performance in water electrolyzer and fuel cell applications. On the other hand, MoS2, possessing multiple electrocatalytic active sites, can act both as support and booster to Pd-based electrocatalytic structures. Herein, MoSx@Pd hybrids were successfully synthesized by using a one-pot liquid phase solvothermal strategy with stoichiometric excess of Pd. The optimized MoSx@Pd proves to be an excellent bifunctional electrocatalyst for both hydrogen evolution reaction and oxygen reduction reaction (ORR). Optimized MoSx@Pd operates the process for hydrogen evolution at the same potential as Pt/C and achieves a low overpotential of 76 mV at −10 mA cm−2 due to improved reaction kinetics and charge transfer processes between Pd and MoS2. On top of that, MoSx@Pd exhibits excellent performance and stability as cathode electrocatalyst in a polymer electrolyte membrane water electrolyzer. Simultaneously, the bifunctional electrocatalyst shows enhanced electrocatalytic ORR activity and stability by maintaining 93% of its initial activity outperforming commercial Pt/C. Finally, rotating ring disk electrode analysis reveals that ORR proceeds through the energy efficient 4e− pathway, with water being the main product, rendering MoSx@Pd a promising component for fuel cells.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2023
Keywords
electrocatalyst, hydrogen evolution reaction, oxygen reduction reaction, polymer electrolyte membranes, transition metal dichalcogenides, water electrolysis
National Category
Physical Chemistry
Identifiers
urn:nbn:se:umu:diva-204762 (URN)10.1002/adsu.202200518 (DOI)000921356300001 ()2-s2.0-85147315186 (Scopus ID)
Funder
Swedish Research Council, 2018-03937The Kempe Foundations, JCK-2132The Kempe Foundations, JCK-2021Carl Tryggers foundation , CTS 21–1581
Available from: 2023-02-21 Created: 2023-02-21 Last updated: 2023-06-19Bibliographically approved
Miranda la Hera, V., Mena Gómez, J., Canto-Aguilar, E., Barzegar, H. R., Carvajal, J. J., Wågberg, T. & Gracia-Espino, E. (2023). Electronic properties of hexagonal v-shaped gallium nitride pits. The Journal of Physical Chemistry C, 127(51), 24658-24665
Open this publication in new window or tab >>Electronic properties of hexagonal v-shaped gallium nitride pits
Show others...
2023 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 127, no 51, p. 24658-24665Article in journal (Refereed) Published
Abstract [en]

In this work, the morphology, surface composition, and electronic properties of porous GaN films containing hexagonal V-shaped pits were studied. The V-pits are orientated along the [0001] direction of GaN, and we observed a clear relation between the growth time with the surface composition, film thickness, and pit morphology, which in turn had a significant impact on the band gap, valence band maximum, and the work function. The effect on the position of the valence band maximum and work function is explained by the formation of superficial oxygen-rich phases such as Ga2O3 and nonstoichiometric GaNxOy as supported by X-ray photoelectron spectroscopy and density functional theory (DFT). We further show a change in the optical band gap with the thickness of the porous films explained by a change in the tensile strain caused by open-core screw dislocations that gives rise to the formation of V-pits. The correlation between strain and the band gap is supported by DFT calculations. Our study provides insights into the intricate relation between surface states and electronic properties of semiconducting materials and offers directions for designing GaN heterojunctions with specific optical and electronic properties.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2023
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:umu:diva-219532 (URN)10.1021/acs.jpcc.3c05878 (DOI)001134057500001 ()2-s2.0-85181028161 (Scopus ID)
Funder
Swedish Research Council, 2018-03937Swedish Research Council, 2021-04629Swedish Energy Agency, 45419-1Swedish Foundation for Strategic Research, SSF-Agenda 2030-PUSHCarl Tryggers foundation , CTS21-1581
Available from: 2024-01-19 Created: 2024-01-19 Last updated: 2024-01-19Bibliographically approved
Perivoliotis, D. K., Ekspong, J., Zhao, X., Hu, G., Wågberg, T. & Gracia-Espino, E. (2023). Recent progress on defect-rich electrocatalysts for hydrogen and oxygen evolution reactions. Nano Today, 50, Article ID 101883.
Open this publication in new window or tab >>Recent progress on defect-rich electrocatalysts for hydrogen and oxygen evolution reactions
Show others...
2023 (English)In: Nano Today, ISSN 1748-0132, E-ISSN 1878-044X, Vol. 50, article id 101883Article, review/survey (Refereed) Published
Abstract [en]

To meet the demanding requirements for clean energy production, the need to develop advanced electrocatalysts for efficiently catalysing the water splitting reactions attracts a continuously increased attention. However, to meet the anticipated expansion in green hydrogen production from renewable energy sources, the catalysts used for the water splitting reaction not only need to satisfy the required figures of merit but should concurrently be based mainly on abundant, non-critical materials with low environmental impact. In last decades, non-noble metal catalysts, based on transition metals, rare-earth metals, dichalcogenides, and light elements such as phosphorus, nitrogen, and sulphur have shown improved performance. Moreover, in recent years increased interest has been focused on variations of such materials, more specifically on the introduction of defects to further boost their catalytic performance. Through the many studies performed over the last years, it is now possible to summarize, understand and describe the role of these defects for the water splitting reactions, namely the hydrogen and oxygen evolution reactions, and thereby to suggest strategies in the development of next generation electrocatalysts. This is the goal of the current review; we critically summarize the latest progress on the role of introduced defects for catalytic electrolysis applications by scrutinizing the structure–performance correlation as well as the specific catalytic activity. A broad class of nanomaterials is covered, comprising transition metal dichalcogenides, transition metal oxides and carbides, carbon-based materials as well as metal–organic frameworks (MOFs). Finally, the main challenges and future strategies and perspectives in this rapidly evolving field are provided at the end of the review.

Place, publisher, year, edition, pages
Elsevier, 2023
Keywords
Defects, Earth-abundant catalysts, Electrolysis, Heterogeneous catalysis, Hydrogen evolution reaction, Oxygen evolution reaction, Water-splitting
National Category
Other Chemical Engineering
Identifiers
urn:nbn:se:umu:diva-209879 (URN)10.1016/j.nantod.2023.101883 (DOI)001015343200001 ()2-s2.0-85161062876 (Scopus ID)
Funder
Swedish Research Council, 2018-03937Swedish Research Council, 2021-04629Carl Tryggers foundation , CTS 21-1581The Kempe Foundations, JCK-2021Swedish Foundation for Strategic Research
Available from: 2023-06-16 Created: 2023-06-16 Last updated: 2023-09-05Bibliographically approved
Wu, X., Piñeiro-García, A., Rafei, M., Boulanger, N., Canto-Aguilar, E. J. & Gracia-Espino, E. (2023). Scalable production of foam-like nickel-molybdenum coatings via plasma spraying as bifunctional electrocatalysts for water splitting. Physical Chemistry, Chemical Physics - PCCP, 25(31), 20794-20807
Open this publication in new window or tab >>Scalable production of foam-like nickel-molybdenum coatings via plasma spraying as bifunctional electrocatalysts for water splitting
Show others...
2023 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 25, no 31, p. 20794-20807Article in journal (Refereed) Published
Abstract [en]

Foam-like NiMo coatings were produced from an inexpensive mixture of Ni, Al, and Mo powders via atmospheric plasma spraying. The coatings were deposited onto stainless-steel meshes forming a highly porous network mainly composed of nanostructured Ni and highly active Ni4Mo. High material loading (200 mg cm−2) with large surface area (1769 cm2 per cm2) was achieved without compromising the foam-like characteristics. The coatings exhibited excellent activity towards both hydrogen evolution (HER) and oxygen evolution (OER) reactions in alkaline media. The HER active coating required an overpotential of 42 mV to reach a current density of −50 mA cm−2 with minimum degradation after a 24 h chronoamperometry test at −10 mA cm−2. Theoretical simulations showed that several crystal surfaces of Ni4Mo exhibit near optimum hydrogen adsorption energies and improved water dissociation that benefit the HER activity. The OER active coating also consisting of nanostructured Ni and Ni4Mo required only 310 mV to achieve a current density of 50 mA cm−2. The OER activity was maintained even after 48 h of continuous operation. We envisage that the development of scalable production techniques for Ni4Mo alloys will greatly benefit its usage in commercial alkaline water electrolysers.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2023
National Category
Other Chemical Engineering Physical Chemistry
Identifiers
urn:nbn:se:umu:diva-212732 (URN)10.1039/d3cp01444d (DOI)001031244900001 ()37465860 (PubMedID)2-s2.0-85166241263 (Scopus ID)
Funder
Swedish Research Council, 2018-03937The Kempe Foundations, JCK-2132Carl Tryggers foundation , CTS 21-1581Swedish Research Council, 2022-06725Swedish Research Council, 2018-05973
Available from: 2023-08-16 Created: 2023-08-16 Last updated: 2024-02-26Bibliographically approved
Liu, Y.-f., Tang, S., Wu, X., Boulanger, N., Gracia-Espino, E., Wågberg, T., . . . Wang, J. (2022). Carbon nanodots: a metal-free, easy-to-synthesize, and benign emitter for light-emitting electrochemical cells. Nano Reseach, 15(6), 5610-5618
Open this publication in new window or tab >>Carbon nanodots: a metal-free, easy-to-synthesize, and benign emitter for light-emitting electrochemical cells
Show others...
2022 (English)In: Nano Reseach, ISSN 1998-0124, E-ISSN 1998-0000, Vol. 15, no 6, p. 5610-5618Article in journal (Refereed) Published
Abstract [en]

Light-emitting electrochemical cells (LECs) can be fabricated with cost-efficient printing and coating methods, but a current drawback is that the LEC emitter is commonly either a rare-metal complex or an expensive-to-synthesize conjugated polymer. Here, we address this issue through the pioneering employment of metal-free and facile-to-synthesize carbon nanodots (CNDs) as the emitter in functional LEC devices. Circular-shaped (average diameter = 4.4 nm) and hydrophilic CNDs, which exhibit narrow cyan photoluminescence (peak = 485 nm, full width at half maximum = 30 nm) with a high quantum yield of 77% in dilute ethanol solution, were synthesized with a catalyst-free, one-step solvothermal process using low-cost and benign phloroglucinol as the sole starting material. The propensity of the planar CNDs to form emission-quenching aggregates in the solid state was inhibited by the inclusion of a compatible 2,7-bis(diphenylphosphoryl)-9,9′-spirobifluorene host compound, and we demonstrate that such pristine host-guest CND-LECs turn on to a peak luminance of 118 cd·m−2 within 5 s during constant current-density driving at 77 mA·cm−2.

Place, publisher, year, edition, pages
Springer, 2022
Keywords
carbon nanodot, light-emitting electrochemical cell, phloroglucinol, solution-based fabrication, sustainable synthesis
National Category
Other Physics Topics
Identifiers
urn:nbn:se:umu:diva-193331 (URN)10.1007/s12274-022-4126-8 (DOI)000769316800005 ()2-s2.0-85126301644 (Scopus ID)
Funder
The Kempe Foundations, SMK-1849.1Swedish Energy Agency, 45419-1Swedish Energy Agency, 46523-1Swedish Energy Agency, 50779-1Swedish Research Council, 2017-04380Swedish Research Council, 2017-04862Swedish Research Council, 2018-03937Swedish Research Council, 2019-02345Swedish Foundation for Strategic ResearchOlle Engkvists stiftelse, 186-0637Olle Engkvists stiftelse, 193- 0578Bertil & Britt Svenssons Stiftelse för BelysningsteknikThe Swedish Foundation for International Cooperation in Research and Higher Education (STINT), 2019-8553
Available from: 2022-03-29 Created: 2022-03-29 Last updated: 2023-03-24Bibliographically approved
Projects
Disorder and Stoichiometry Imbalance as Tools to Improve Catalytic Activity in Multimetallic Chalcogenides [2018-03937_VR]; Umeå University
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-9239-0541

Search in DiVA

Show all publications