Open this publication in new window or tab >>Show others...
2022 (English)In: mBio, ISSN 2161-2129, E-ISSN 2150-7511, Vol. 13, no 3, article id e00892-22Article in journal (Refereed) Published
Abstract [en]
The coronavirus disease 2019, COVID-19, is a complex disease with a wide range of symptoms from asymptomatic infections to severe acute respiratory syndrome with lethal outcome. Individual factors such as age, sex, and comorbidities increase the risk for severe infections, but other aspects, such as genetic variations, are also likely to affect the susceptibility to SARS-CoV-2 infection and disease severity. Here, we used a human 3D lung cell model based on primary cells derived from multiple donors to identity host factors that regulate SARS-CoV-2 infection. With a transcriptomics-based approach, we found that less susceptible donors show a higher expression level of serine protease inhibitors SERPINA1, SERPINE1, and SERPINE2, identifying variation in cellular serpin levels as restricting host factors for SARS-CoV-2 infection. We pinpoint their antiviral mechanism of action to inhibition of the cellular serine protease, TMPRSS2, thereby preventing cleavage of the viral spike protein and TMPRSS2-mediated entry into the target cells. By means of single-cell RNA sequencing, we further locate the expression of the individual serpins to basal, ciliated, club, and goblet cells. Our results add to the importance of genetic variations as determinants for SARS-CoV-2 susceptibility and suggest that genetic deficiencies of cellular serpins might represent risk factors for severe COVID-19. Our study further highlights TMPRSS2 as a promising target for antiviral intervention and opens the door for the usage of locally administered serpins as a treatment against COVID-19.
Place, publisher, year, edition, pages
American Society for Microbiology, 2022
Keywords
A1AT, alpha-1-antitrypsin, antithrombin III, ATIII, COVID-19, PAI1, plasminogen activator inhibitor 1, SARS-CoV-2, serpin, TMPRSS2
National Category
Infectious Medicine
Identifiers
urn:nbn:se:umu:diva-203186 (URN)10.1128/mbio.00892-22 (DOI)000797888900001 ()35532162 (PubMedID)2-s2.0-85133144334 (Scopus ID)
Funder
Science for Life Laboratory, SciLifeLabSwedish National Infrastructure for Computing (SNIC), SNIC 2020/6-251Swedish Heart Lung Foundation, 2020038Knut and Alice Wallenberg Foundation, 2020.0182Knut and Alice Wallenberg Foundation, C19R:028Swedish Society for Medical Research (SSMF)The Kempe Foundations, JCK-1827Swedish Research Council, 2016-06598
2023-01-172023-01-172024-11-01Bibliographically approved