Umeå University's logo

umu.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (4 of 4) Show all publications
Nilsson, H., Zhang, Q., Stenberg Wieser, G., Holmström, M., Barabash, S., Futaana, Y., . . . Wieser, M. (2023). Solar cycle variation of ion escape from Mars. Icarus, 393, Article ID 114610.
Open this publication in new window or tab >>Solar cycle variation of ion escape from Mars
Show others...
2023 (English)In: Icarus, ISSN 0019-1035, E-ISSN 1090-2643, Vol. 393, article id 114610Article in journal (Refereed) Published
Abstract [en]

Using Mars Express data from 2007 until 2020 we show how ion outflow from Mars varied over more than a solar cycle, from one solar minimum to another. The data was divided into intervals with a length of one Martian year, starting from 30 April 2007 and ending 13 July 2020. The net escape rate was about 5×1024s−1 in the first covered minimum, and 2−3×1024s−1 in the most recent minimum. Ion escape peaked at 1×1025s−1 during the intervening solar maximum. The outflow is a clear function of the solar cycle, in agreement with previous studies which found a clear relationship between solar EUV flux and ion escape at Mars. The outflow during solar maximum is 2.5 to 3 times higher than in the surrounding solar minima. The average solar wind dynamic pressure over a Martian year was investigated, but does not vary much with the solar cycle. The escape rate at solar maximum is in good agreement with some recent MAVEN studies, and dominated by low energy ions at most sampled locations. A simple linear fit to the data gives a prediction of the escape rate for the much stronger solar maximum during the Phobos mission in 1989 that is consistent with observations. The fit also implies a non-linear response of ion escape for low solar EUV, with a lower initial escape response for lower solar EUV levels than those of the studied data set.

Place, publisher, year, edition, pages
Academic Press, 2023
Keywords
Magnetospheres, Mars, Mars atmosphere, Mars climate
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
urn:nbn:se:umu:diva-191346 (URN)10.1016/j.icarus.2021.114610 (DOI)000953414200001 ()2-s2.0-85111018401 (Scopus ID)
Available from: 2022-01-13 Created: 2022-01-13 Last updated: 2023-05-02Bibliographically approved
Pontoni, A., Shimoyama, M., Futaana, Y., Fatemi, S., Poppe, A., Wieser, M. & Barabash, S. (2022). Simulations of Energetic Neutral Atom Sputtering From Ganymede in Preparation for the JUICE Mission. Journal of Geophysical Research - Space Physics, 127(1), Article ID e2021JA029439.
Open this publication in new window or tab >>Simulations of Energetic Neutral Atom Sputtering From Ganymede in Preparation for the JUICE Mission
Show others...
2022 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 127, no 1, article id e2021JA029439Article in journal (Refereed) Published
Abstract [en]

Jovian magnetospheric plasma irradiates the surface of Ganymede and is postulated to be the primary agent that changes the surface brightness of Ganymede, leading to asymmetries between polar and equatorial regions as well as between the trailing and leading hemispheres. As impinging ions sputter surface constituents as neutrals, ion precipitation patterns can be remotely imaged using the Energetic Neutral Atoms (ENA) measurement technique. Here we calculate the expected sputtered ENA flux from the surface of Ganymede to help interpret future observations by ENA instruments, particularly the Jovian Neutrals Analyzer (JNA) onboard the JUpiter ICy moon Explorer (JUICE) spacecraft. We use sputtering models developed based on laboratory experiments to calculate sputtered fluxes of H2O, O2, and H2. The input ion population used in this study is the result of test particle simulations using electric and magnetic fields from a hybrid simulation of Ganymede's environment. This population includes a thermal component (H+ and O+ from 10 eV to 10 keV) and an energetic component (H+, O++, and S+++ from 10 keV to 10 MeV). We find a global ENA sputtering rate from Ganymede of 1.42 × 1027 s−1, with contributions from H2, O2, and H2O of 34%, 17%, and 49% respectively. We also calculate the energy distribution of sputtered Energetic Neutral Atoms (ENAs), give an estimate of a typical JNA count rate at Ganymede, and investigate latitudinal variations of sputtered fluxes along a simulated orbit track of the JUICE spacecraft. Our results demonstrate the capability of the JNA sensor to remotely map ion precipitation at Ganymede.

Place, publisher, year, edition, pages
John Wiley & Sons, 2022
Keywords
energetic neutral atoms, Ganymede, JUICE, sputtering
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:umu:diva-192668 (URN)10.1029/2021JA029439 (DOI)000759550200017 ()2-s2.0-85124417315 (Scopus ID)
Funder
Swedish National Space Board, 179/18Swedish National Space Board, 189/16
Available from: 2022-02-21 Created: 2022-02-21 Last updated: 2023-09-05Bibliographically approved
Fatemi, S., Poirier, N., Holmström, M., Lindkvist, J., Wieser, M. & Barabash, S. (2018). A modelling approach to infer the solar wind dynamic pressure from magnetic field observations inside Mercury's magnetosphere. Astronomy and Astrophysics, 614, Article ID A132.
Open this publication in new window or tab >>A modelling approach to infer the solar wind dynamic pressure from magnetic field observations inside Mercury's magnetosphere
Show others...
2018 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 614, article id A132Article in journal (Refereed) Published
Abstract [en]

Aims: The lack of an upstream solar wind plasma monitor when a spacecraft is inside the highly dynamic magnetosphere of Mercury limits interpretations of observed magnetospheric phenomena and their correlations with upstream solar wind variations.

Methods: We used AMITIS, a three-dimensional GPU-based hybrid model of plasma (particle ions and fluid electrons) to infer the solar wind dynamic pressure and Alfvén Mach number upstream of Mercury by comparing our simulation results with MESSENGER magnetic field observations inside the magnetosphere of Mercury. We selected a few orbits of MESSENGER that have been analysed and compared with hybrid simulations before. Then we ran a number of simulations for each orbit (~30–50 runs) and examined the effects of the upstream solar wind plasma variations on the magnetic fields observed along the trajectory of MESSENGER to find the best agreement between our simulations and observations.

Results: We show that, on average, the solar wind dynamic pressure for the selected orbits is slightly lower than the typical estimated dynamic pressure near the orbit of Mercury. However, we show that there is a good agreement between our hybrid simulation results and MESSENGER observations for our estimated solar wind parameters. We also compare the solar wind dynamic pressure inferred from our model with those predicted previously by the WSA-ENLIL model upstream of Mercury, and discuss the agreements and disagreements between the two model predictions. We show that the magnetosphere of Mercury is highly dynamic and controlled by the solar wind plasma and interplanetary magnetic field. In addition, in agreement with previous observations, our simulations show that there are quasi-trapped particles and a partial ring current-like structure in the nightside magnetosphere of Mercury, more evident during a northward interplanetary magnetic field (IMF). We also use our simulations to examine the correlation between the solar wind dynamic pressure and stand-off distance of the magnetopause and compare it with MESSENGER observations. We show that our model results are in good agreement with the response of the magnetopause to the solar wind dynamic pressure, even during extreme solar events. We also show that our model can be used as a virtual solar wind monitor near the orbit of Mercury and this has important implications for interpretation of observations by MESSENGER and the future ESA/JAXA mission to Mercury, BepiColombo.

Keywords
planets and satellites: terrestrial planets, methods: numerical, solar-terrestrial relations, solar wind, Sun: activity, magnetic fields
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:umu:diva-147410 (URN)10.1051/0004-6361/201832764 (DOI)000436411500002 ()2-s2.0-85049600986 (Scopus ID)
Available from: 2018-05-03 Created: 2018-05-03 Last updated: 2023-03-23Bibliographically approved
Lindkvist, J., Holmström, M., Fatemi, S., Wieser, M. & Barabash, S. (2017). Ceres interaction with the solar wind. Geophysical Research Letters, 44(5), 2070-2077
Open this publication in new window or tab >>Ceres interaction with the solar wind
Show others...
2017 (English)In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 44, no 5, p. 2070-2077Article in journal (Refereed) Published
Abstract [en]

The solar wind interaction with Ceres is studied for a high water vapor release from its surface using a hybrid model including photoionization. We use a water vapor production rate of 6 kg/s, thought to be due to subsurface sublimation, corresponding to a detection on 6 March 2013 by the Herschel Space Observatory. We present the general morphology of the plasma interactions, both close to Ceres and on a larger scale. Mass loading of water ions causes a magnetic pileup region in front of Ceres, where the solar wind deflects up to 15 ∘ and slows down by 15%. The global plasma interaction with Ceres is not greatly affected by the source location of water vapor nor on gravity, only on the production rate of water vapor. On a global scale, Ceres has a comet-like interaction with the solar wind with observable perturbations farther than 250 Ceres radii downstream of the body.

National Category
Fusion, Plasma and Space Physics
Research subject
Space and Plasma Physics
Identifiers
urn:nbn:se:umu:diva-119797 (URN)10.1002/2016GL072375 (DOI)000398183700003 ()2-s2.0-85014516987 (Scopus ID)
Funder
Swedish National Space Board
Available from: 2016-04-27 Created: 2016-04-27 Last updated: 2023-03-24Bibliographically approved
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-1760-210x

Search in DiVA

Show all publications