Umeå University's logo

umu.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (10 of 16) Show all publications
Säfström, A. I., Lithner, J., Palm, T., Palmberg, B., Sidenvall, J., Andersson, C., . . . Granberg, C. (2024). Developing a diagnostic framework for primary and secondary students’ reasoning difficulties during mathematical problem solving. Educational Studies in Mathematics, 115(2), 125-149
Open this publication in new window or tab >>Developing a diagnostic framework for primary and secondary students’ reasoning difficulties during mathematical problem solving
Show others...
2024 (English)In: Educational Studies in Mathematics, ISSN 0013-1954, E-ISSN 1573-0816, Vol. 115, no 2, p. 125-149Article in journal (Refereed) Published
Abstract [en]

It is well-known that a key to promoting students’ mathematics learning is to provide opportunities for problem solving and reasoning, but also that maintaining such opportunities in student–teacher interaction is challenging for teachers. In particular, teachers need support for identifying students’ specific difficulties, in order to select appropriate feedback that supports students’ mathematically founded reasoning without reducing students’ responsibility for solving the task. The aim of this study was to develop a diagnostic framework that is functional for identifying, characterising, and communicating about the difficulties students encounter when trying to solve a problem and needing help from the teacher to continue the construction of mathematically founded reasoning. We describe how we reached this aim by devising iterations of design experiments, including 285 examples of students’ difficulties from grades 1–12, related to 110 tasks, successively increasing the empirical grounding and theoretical refinement of the framework. The resulting framework includes diagnostic questions, definitions, and indicators for each diagnosis and structures the diagnostic process in two simpler steps with guidelines for difficult cases. The framework therefore has the potential to support teachers both in eliciting evidence about students’ reasoning during problem solving and in interpreting this evidence.

Place, publisher, year, edition, pages
Springer Nature, 2024
Keywords
Problem solving, Mathematical reasoning, Diagnostic framework, Students’ reasoning difficulties, Formative assessment, Design research
National Category
Didactics
Research subject
didactics of mathematics
Identifiers
urn:nbn:se:umu:diva-218518 (URN)10.1007/s10649-023-10278-1 (DOI)001126319800002 ()2-s2.0-85180228692 (Scopus ID)
Funder
Swedish Research Council, 2017-03663Swedish Institute for Educational Research, 2019-00038
Available from: 2023-12-20 Created: 2023-12-20 Last updated: 2024-03-05Bibliographically approved
Sidenvall, J., Granberg, C., Lithner, J. & Palmberg, B. (2024). Supporting teachers in supporting students’ mathematical problem solving. International Journal of Mathematical Education in Science and Technology, 55(10), 2389-2409
Open this publication in new window or tab >>Supporting teachers in supporting students’ mathematical problem solving
2024 (English)In: International Journal of Mathematical Education in Science and Technology, ISSN 0020-739X, E-ISSN 1464-5211, Vol. 55, no 10, p. 2389-2409Article in journal (Refereed) Published
Abstract [en]

The purpose of this intervention study was to develop and evaluate a support model for teachers, designed to assist them in diagnosing students’ (age 16–19 years) difficulties and providing feedback to support students’ mathematical problem solving. Reporting on an iteration in a design research project, the results showed that the support helped the teachers to provide less procedural information and instead help students construct solutions for themselves. Constraints in achieving this included the nature of some tasks, difficulties in making reasonable diagnoses, and students’ inability to communicate their difficulties.

Place, publisher, year, edition, pages
Taylor & Francis Group, 2024
Keywords
design research, formative assessment, problem solving, Teacher support
National Category
Didactics
Identifiers
urn:nbn:se:umu:diva-202011 (URN)10.1080/0020739X.2022.2151067 (DOI)000897038800001 ()2-s2.0-85144104393 (Scopus ID)
Funder
Marcus and Amalia Wallenberg Foundation
Available from: 2022-12-29 Created: 2022-12-29 Last updated: 2024-10-29Bibliographically approved
Sidenvall, J., Säfström, A. I. & Boström, E. (2022). Problem-solving in Swedish curricula in a time of change. In: Linda Mattsson; Johan Häggström; Martin Carlsen; Cecilia Kilhamn; Hanna Palmér; Miguel Perez; Kerstin Pettersson (Ed.), The relation between mathematics education research and teachers’ professional development: Proceedings of MADIF 13. Paper presented at MADIF thirteenth research conference of the Swedish Society for Research in Mathematics Education Växjö, March 29–30, 2022. (pp. 93-104). Göteborg: Svensk förening för MatematikDidaktisk Forskning - SMDF
Open this publication in new window or tab >>Problem-solving in Swedish curricula in a time of change
2022 (English)In: The relation between mathematics education research and teachers’ professional development: Proceedings of MADIF 13 / [ed] Linda Mattsson; Johan Häggström; Martin Carlsen; Cecilia Kilhamn; Hanna Palmér; Miguel Perez; Kerstin Pettersson, Göteborg: Svensk förening för MatematikDidaktisk Forskning - SMDF, 2022, p. 93-104Conference paper, Published paper (Refereed)
Abstract [en]

It is long known that students’ learning in mathematics is facilitated by problem-solvingactivities, and school authorities all over the world have incorporated problem-solvingin their curricula. However, problem-solving does not have a clear definition, and itsmeaning risks being watered down in the process of implementation. In this study, weexamine how problem-solving is described and used in Swedish syllabi, commentarymaterials and national tests for school year 6–10, before and after the 2021 and 2022 revisions. Our results show that ‘problem-solving’ is increasingly conceptualised as agoal rather than a means for learning, and that as a goal problem-solving competencyis reduced. As a guidance for teachers the policy documents are often vague and evencontradictory. Implications for teaching practice and Swedish students are discussed.

Place, publisher, year, edition, pages
Göteborg: Svensk förening för MatematikDidaktisk Forskning - SMDF, 2022
Series
Skrifter från Svensk förening för Matematik Didaktisk Forskning, ISSN 1651-3274 ; 16
National Category
Didactics Other Educational Sciences
Research subject
didactics of mathematics
Identifiers
urn:nbn:se:umu:diva-239052 (URN)978-91-984024-5-2 (ISBN)
Conference
MADIF thirteenth research conference of the Swedish Society for Research in Mathematics Education Växjö, March 29–30, 2022.
Available from: 2025-05-21 Created: 2025-05-21 Last updated: 2025-05-22Bibliographically approved
Säfström, A. I., Palmberg, B., Granberg, C., Sidenvall, J. & Lithner, J. (2021). Initiating teacher-researcher collaboration to support students' mathematical problem-solving. Nordisk matematikkdidaktikk, NOMAD: [Nordic Studies in Mathematics Education] (3–4), 131-151
Open this publication in new window or tab >>Initiating teacher-researcher collaboration to support students' mathematical problem-solving
Show others...
2021 (English)In: Nordisk matematikkdidaktikk, NOMAD: [Nordic Studies in Mathematics Education], ISSN 1104-2176, no 3–4, p. 131-151Article in journal (Refereed) Published
Abstract [en]

Implementing teaching through mathematical problem-solving entails substantial challenges and calls for sustained teacher-researcher collaboration. The joint research and development project ”Teaching that supports students’ creative mathematical problem-solving” has a fundamental ambition to be symmetric in that both teachers’ and researchers’ needs and conditions are attended to and complementary in that their different areas of expertise are utilised and valued. In this paper we show how the interplay and development of symmetry and complementarity can function as a means for studying teacher-researcher collaborations.

National Category
Didactics
Identifiers
urn:nbn:se:umu:diva-188923 (URN)
Available from: 2021-10-26 Created: 2021-10-26 Last updated: 2024-07-02Bibliographically approved
Sidenvall, J. (2021). Ökad matematisk förståelse genom problemlösning. Nämnaren : tidskrift för matematikundervisning (4), 81-86
Open this publication in new window or tab >>Ökad matematisk förståelse genom problemlösning
2021 (Swedish)In: Nämnaren : tidskrift för matematikundervisning, ISSN 0348-2723, no 4, p. 81-86Article in journal (Other academic) Published
Abstract [sv]

Ett centralt skäl till elevers svårigheter med matematik är att undervisningendomineras av utantillinlärning och arbete med rutinuppgifter trots att vi vet atten undervisning som lyfter fram problemlösning är mer effektiv för att utvecklamatematisk förståelse. Genom ett aktivt val av uppgifter kan lärandet förbättras.

Place, publisher, year, edition, pages
Göteborg: Nationellt centrum för matematikutbildning (NCM), 2021
National Category
Didactics
Identifiers
urn:nbn:se:umu:diva-192616 (URN)
Available from: 2022-02-18 Created: 2022-02-18 Last updated: 2024-07-01Bibliographically approved
Jäder, J., Lithner, J. & Sidenvall, J. (2020). Mathematical problem solving in textbooks from twelve countries. International Journal of Mathematical Education in Science and Technology, 51(7), 1120-1136
Open this publication in new window or tab >>Mathematical problem solving in textbooks from twelve countries
2020 (English)In: International Journal of Mathematical Education in Science and Technology, ISSN 0020-739X, E-ISSN 1464-5211, Vol. 51, no 7, p. 1120-1136Article in journal (Refereed) Published
Abstract [en]

A selection of secondary school mathematics textbooks from twelve countries on five continents was analysed to better understand the support they might be in teaching and learning mathematical problem solving. Over 5700 tasks were compared to the information provided earlier in each textbook to determine whether each task could be solved by mimicking available templates or whether a solution had to be constructed without guidance from the textbook. There were similarities between the twelve textbooks in the sense that most tasks could be solved using a template as guidance. A significantly lower proportion of the tasks required a solution to be constructed. This was especially striking in the initial sets of tasks. Textbook descriptions indicating problem solving did not guarantee that a task solution had to be constructed without the support of an available template.

Place, publisher, year, edition, pages
Taylor & Francis, 2020
Keywords
mathematics textbooks, mathematics tasks, mathematical problem solving, secondary school
National Category
Didactics
Identifiers
urn:nbn:se:umu:diva-157562 (URN)10.1080/0020739X.2019.1656826 (DOI)000484213400001 ()2-s2.0-85071319341 (Scopus ID)
Note

Originally included in thesis 1 in manuscript form 

Available from: 2019-03-26 Created: 2019-03-26 Last updated: 2023-03-24Bibliographically approved
Sidenvall, J. (2019). Literature review of mathematics teaching design for problem solving and reasoning. Nordisk matematikkdidaktikk, NOMAD: [Nordic Studies in Mathematics Education], 24(1), 51-74
Open this publication in new window or tab >>Literature review of mathematics teaching design for problem solving and reasoning
2019 (English)In: Nordisk matematikkdidaktikk, NOMAD: [Nordic Studies in Mathematics Education], ISSN 1104-2176, Vol. 24, no 1, p. 51-74Article in journal (Refereed) Published
Abstract [en]

To characterize teaching designs intended to enhance students’ problem solving and reasoning skills or to develop other mathematical competencies via problem solving and reasoning, a literature review was conducted of 26 articles published in seven top-ranked journals on mathematics education from 2000 to 2016. Teaching designs were characterized by a) the educational goals of the designs, b) the claims about how to reach these goals, and c) the empirical and theoretical arguments underlying these claims. Thematic analysis was used to analyze the retrieved articles. All but two studies had goals concerned with developing students’ mathematical competencies. The overarching ideas of the identified emergent claims regarding the achievement of stipulated goals, concerned scaffolding students’ learning and letting students construct their own mathematics. Four recurring theoretical arguments were found to support emergent claims: hypothetical learning trajectories, realistic mathematics education, theory of didactical situations and zone of proximal development.

Place, publisher, year, edition, pages
Göteborgs universitet, 2019
National Category
Educational Sciences
Identifiers
urn:nbn:se:umu:diva-156533 (URN)
Projects
Learning by Imitative and Creative Reasoning
Available from: 2019-02-19 Created: 2019-02-19 Last updated: 2021-01-22Bibliographically approved
Sidenvall, J. (2019). Lösa problem: om elevers förutsättningar att lösa problem och hur lärare kan stödja processen. (Doctoral dissertation). Umeå: Umeå universitet
Open this publication in new window or tab >>Lösa problem: om elevers förutsättningar att lösa problem och hur lärare kan stödja processen
2019 (Swedish)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[en]
Solving problems : on students’ opportunities to solve problems and how teachers can support this process
Abstract [sv]

Generellt sett domineras matematikundervisning av utantillinlärning och arbete med rutinuppgifter. Om undervisning till störst del görs på detta sätt kommer elever ha svårt att att utveckla andra viktiga förmågor i matematik såsom problemlösning, resonemang och begreppsförståelse. Tidigare forskning har visat om elever får jobba med problemuppgifter (dvs. skapa egna lösningsmetoder) i större utsträckning får de en ökad matematisk förståelse, än om de enbart arbetar med rutinuppgifter.

Syftet med avhandlingen var att ge ökade insikter om varför utantillinlärning och arbete med rutinuppgifter fortsätter att vara vanligt samt undersöka och föreslå på vilket sätt elevers förutsättningar att jobba med problemuppgifter skulle kunna förbättras. Detta gjordes genom följande studier. (1) Relationen mellan vilka typer av lösningsstrategier (imitera eller skapa lösningsmetod) som krävdes och vilka som användes vid uppgiftslösning. (2) Relationen mellan elevers val av lösningsstrategi och uppfattningar om matematik. (3) Undersökning av andel problemuppgifter i läroböcker från 12 länder. (4) Karaktärisering av tidigare forskning med avseende på undervisning genom problemlösning och resonemang. (5) Interventionsstudie där ett lärarstöd, utformat för att stödja elevers problemlösning med hjälp av formativ bedömning, utvecklades, testades och utvärderades. Studierna fokuserade i första hand på skolans senare årskurser.

Elevernas förutsättningar att lösa uppgifter genom problemlösning var begränsad: av att det var mycket ovanligt med problemuppgifter bland de enklare uppgifterna i läroböckerna, av elevernas val att använda sig av imitativa lösningsstategier och av att eleverna ofta kunde lösa uppgifter genom att lotsas fram till en lösning av en annan elev eller av läraren. Elevernas förutsättningar begränsades också av elevernas uppfattningar av matematik och av elever ibland arbetade med uppgifter som inte var inom räckhåll att lösas genom problemlösning. 

För att ge elever förbättrade förutsättningar att lösa problemuppgifter bör lärare låta elever arbeta med fler problemuppgifter i en lärandemiljö som innebär att elever faktiskt skapar egna lösningsmetoder och att lärarhjälp baseras på att stödja elever utifrån elevers svårigheter och inte lotsa fram till en lösning. Resultatet ger också implikationer för hur läroböcker kan struktureras och hur det testade lärarstödet skulle kunna vara en del av en proffessionsutveckling och en del av lärarutbildningen.

Abstract [en]

In mathematics education, there is generally too much emphasis on rote learning and superficial reasoning. If learning is mostly done by rote and imitation, important mathematical competencies such as problem-solving, reasoning, and conceptual understanding are not developed. Previous research has shown that students who work with problems (i.e. constructs a new solution method to a task), to a greater extent increase their mathematical understanding than students who only solve routine tasks.

The aim of the thesis was to further understand why teaching is dominated by rote learning and imitation of procedures and investigate how opportunities for students to solve tasks through problem-solving could be improved. This was done through the following studies. (1) Investigating the relation between types of solution strategy required, used, and the rate of correct task solutions in students’ textbook task-solving. (2) Studying the relationship between students’ beliefs and choice of solution strategy when working on problems. (3) Conducting a textbook analysis of mathematics textbooks from 12 countries, to determine the proportions of tasks that could be solved by mimicking available templates and of tasks where a solution had to be constructed without guidance from the textbook. (4) Conducting a literature review in order to characterize teaching designs intended to enhance students to develop mathematical understanding through problem solving and reasoning. (5) Conducting an intervention study were a teacher guide, structured in line with central tenets of formative assessment, was developed, tested, and evaluated in real classroom settings. The teacher guide was designed to support teachers in their support of students’ in their problem-solving process. Studies I, II and V were conducted in Swedish upper secondary school settings. 

The students’ opportunities to solve tasks through problem-solving were limited: by the low proportion of problems among the easier tasks in the textbooks; by the students' choice of using imitative solution strategies; and by the guidance of solution methods that students received from other students and their teachers. The students’ opportunities were also limited by the students' beliefs of mathematics and the fact that a solution method of problem tasks was not always within reach for the students, based on the students' knowledge. In order to improve students’ opportunities, teachers should allow students to work with more problems in a learning environment that lets students engage in problem-solving and support students' work on problems by adapting their support to students' difficulties. The results also give implications for the construction and use of textbooks and how the use of the teacher guide could be part of teachers’ professional development and a tool that teacher students may meet within their education.

Place, publisher, year, edition, pages
Umeå: Umeå universitet, 2019. p. 74
Series
Umeå Studies in the Educational Sciences ; 33
Keywords
problem solving, reasoning, beliefs, textbook, teaching, formative assessment, design research, secondary school, problemlösning, resonemang, uppfattningar, lärobok, lärare, undervisning, formativ bedömning, designforskning, gymnasieskola
National Category
Didactics
Identifiers
urn:nbn:se:umu:diva-157557 (URN)978-91-7855-049-4 (ISBN)
Public defence
2019-05-17, N420, Johan Bures väg 16, Umeå, 12:30 (Swedish)
Opponent
Supervisors
Projects
Lärande genom imitativa och kreativa resonemang (LICR)
Available from: 2019-04-16 Created: 2019-04-09 Last updated: 2024-07-02Bibliographically approved
Jäder, J., Sidenvall, J. & Sumpter, L. (2017). Students' mathematical reasoning and beliefs in non-routine task solving. International Journal of Science and Mathematics Education, 15(4), 759-776
Open this publication in new window or tab >>Students' mathematical reasoning and beliefs in non-routine task solving
2017 (English)In: International Journal of Science and Mathematics Education, ISSN 1571-0068, E-ISSN 1573-1774, Vol. 15, no 4, p. 759-776Article in journal (Refereed) Published
Abstract [en]

Beliefs and problem solving are connected and have been studied in different contexts. One of the common results of previous research is that students tend to prefer algorithmic approaches to mathematical tasks. This study explores Swedish upper secondary school students’ beliefs and reasoning when solving non-routine tasks. The results regarding the beliefs indicated by the students were found deductively and include expectations, motivational beliefs and security. When it comes to reasoning, a variety of approaches were found. Even though the tasks were designed to demand more than imitation of algorithms, students used this method and failed to solve the task.

Place, publisher, year, edition, pages
Springer, 2017
Keywords
Beliefs, Mathematical reasoning, Non-routine tasks, Problem solving, Upper secondary school
National Category
Educational Sciences
Identifiers
urn:nbn:se:umu:diva-127216 (URN)10.1007/s10763-016-9712-3 (DOI)000395003700010 ()
Available from: 2016-11-16 Created: 2016-11-03 Last updated: 2025-02-18Bibliographically approved
Sidenvall, J. (2015). Att lära sig resonera: om elevers möjligheter att lära sig matematiska resonemang. (Licentiate dissertation). Norrköping: Linköping University Electronic Press
Open this publication in new window or tab >>Att lära sig resonera: om elevers möjligheter att lära sig matematiska resonemang
2015 (Swedish)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Students only learn what they get the opportunity to learn. This means, for example, that students do not develop their reasoning- and problem solving competence unless teaching especially focuses on developing these competencies. Despite the fact that it has for the last 20 years been pointed out the need for a reform-oriented mathematics education, research still shows that in Sweden, as well as internationally, an over-emphasis are placed on rote learning and procedures, at the cost of promoting conceptual understanding. Mathematical understanding can be separated into procedural and conceptual understanding, where conceptual understanding can be connected to a reform oriented mathematics education. By developing a reasoning competence conceptual understanding can also be developed. This thesis, which deals with students’ opportunities to learn to reason mathematically, includes three studies (with data from Swedish upper secondary school, year ten and mathematics textbooks from twelve countries). These opportunities have been studied based on a textbook analysis and by studying students' work with textbook tasks during normal classroom work. Students’ opportunities to learn to reason mathematically have also been studied by examining the relationship between students' reasoning and their beliefs. An analytical framework (Lithner, 2008) has been used to categorise and analyse reasoning used in solving tasks and required to solve tasks.

Results support previous research in that teaching and mathematics textbooks are not necessarily in harmony with reform-oriented mathematics teaching. And that students indicated beliefs of insecurity, personal- and subject expectations as well as intrinsic- and extrinsic motivation connects to not using mathematical reasoning when solving non-routine tasks. Most commonly students used other strategies than mathematical reasoning when solving textbook tasks. One common way to solve tasks was to be guided, in particular by another student. The results also showed that the students primarily worked with the simpler tasks in the textbook. These simpler tasks required mathematical reasoning more rarely than the more difficult tasks. The results also showed a negative relationship between a belief of insecurity and the use of mathematical reasoning. Furthermore, the results show that the distributions of tasks that require mathematical reasoning are relatively similar in the examined textbooks across five continents.

Based on the results it is argued for a teaching based on sociomathematical norms that leads to an inquiry based teaching and textbooks that are more in harmony with a reform-oriented mathematics education. 

Abstract [sv]

Elever kan bara lära sig de det de får möjlighet att lära sig. Detta innebär till exempel att elever inte utvecklar sin resonemangs- och problemlösningsförmåga i någon större utsträckning om inte deras undervisning fokuserar på just dessa förmågor. Forskning, nationellt och internationellt visar att det finns en överbetoning på utantillinlärning och på procedurer. Detta verkar ske på bekostnad av en konceptuell förståelse, trots att det under 20 års tid pekats på behovet av en reforminriktad matematikundervisning. Matematisk förståelse kan delas in i procedurell- och konceptuell förståelse där en konceptuell förståelse kan kopplas till en reforminriktad matematikundervisning. Genom att utveckla förmågan att resonera matematiskt utvecklas också den konceptuella förståelsen. Denna avhandling, som inbegriper tre studier (med empiri från gymnasiet år ett och matematikläroböcker från tolv länder) behandlar elevers möjlighet att lära sig att resonera matematiskt. Dessa möjligheter har studerats utifrån att undersöka vilka möjligheter läroboken ger att lära sig matematiska resonemang, dels via en läroboksanalys och dels genom att studera elevers arbete med läroboksuppgifter i klassrumsmiljö. Elevers möjligheter att lära sig att resonera matematiskt har också studerats genom att undersöka relationen mellan elevers matematiska resonemang och deras uppfattningar om matematik. Ett analytiskt ramverk (Lithner, 2008) har används för att kategorisera och analysera resonemang som använts för att lösa uppgifter och som behövs för att lösa en uppgift.

Resultaten från studierna har givit stöd åt tidigare forskning vad gäller att undervisning och läroböckerna inte nödvändigtvis harmonierar med en reforminriktad matematikundervisning. Och att elever har uppfattningar om matematik som bygger på osäkerhet, förväntan på ämnet och sin egen förmåga samt motivation och att dessa uppfattningar delvis kan kopplas till att eleverna inte använder matematiska resonemang för att försöka lösa icke-rutinuppgifter. Det vanligaste sättet att lösa läroboksuppgifter var att välja andra strategier än att använda sig av matematiska resonemang. Ett vanligt sätt att lösa uppgifter var att låta sig guidas, av främst en annan elev. Eleverna arbetade framförallt med de enklare uppgifterna i läroböckerna. Bland dessa enklare uppgifter var det mer sällsynt med uppgifter som krävde matematiska resonemang för att lösas relativt de svårare uppgifterna. Resultaten visade även att det fanns en negativ relation mellan en uppfattning av osäkerhet hos elever och ett användande av matematiska resonemang. Resultaten visade vidare att fördelningen av uppgifter som krävde matematiska resonemang var relativt lika i alla undersökta läroböcker från fem världsdelar.

Utifrån resultaten argumenteras för en förändrad undervisning mot en undersökande undervisning och läroböcker som är mer i harmoni med en reforminriktad matematikundervisning.

Place, publisher, year, edition, pages
Norrköping: Linköping University Electronic Press, 2015. p. 59
Series
Studies in Science and Technology Education, ISSN 1652-5051 ; 86
Keywords
Mathematical reasoning, problem solving, mathematics textbook, beliefs, mathematics tasks, opportunities to learn, upper secondary school, Matematiska resonemang, problem lösning, lärobok, uppfattningar, matematiska uppgifter, möjligheten att lära, gymnasiet
National Category
Educational Sciences
Research subject
didactics of mathematics
Identifiers
urn:nbn:se:umu:diva-127210 (URN)10.3384/lic.diva-117759 (DOI)978-91-7519-100-3 (ISBN)
Presentation
2015-03-18, K2, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping, 10:15 (Swedish)
Opponent
Supervisors
Available from: 2019-12-16 Created: 2016-11-03 Last updated: 2021-01-22Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-3691-1995

Search in DiVA

Show all publications