Open this publication in new window or tab >>2018 (English)In: Journal of Computational and Applied Mathematics, ISSN 0377-0427, E-ISSN 1879-1778, Vol. 330, p. 177-192Article in journal (Refereed) Published
Abstract [en]
We present an efficient procedure for computing resonances and resonant modes of Helmholtz problems posed in exterior domains. The problem is formulated as a nonlinear eigenvalue problem (NEP), where the nonlinearity arises from the use of a Dirichlet-to-Neumann map, which accounts for modeling unbounded domains. We consider a variational formulation and show that the spectrum consists of isolated eigenvalues of finite multiplicity that only can accumulate at infinity. The proposed method is based on a high order finite element discretization combined with a specialization of the Tensor Infinite Arnoldi method (TIAR). Using Toeplitz matrices, we show how to specialize this method to our specific structure. In particular we introduce a pole cancellation technique in order to increase the radius of convergence for computation of eigenvalues that lie close to the poles of the matrix-valued function. The solution scheme can be applied to multiple resonators with a varying refractive index that is not necessarily piecewise constant. We present two test cases to show stability, performance and numerical accuracy of the method. In particular the use of a high order finite element discretization together with TIAR results in an efficient and reliable method to compute resonances.
Place, publisher, year, edition, pages
Amsterdam: Elsevier, 2018
Keywords
Nonlinear eigenvalue problems, Helmholtz problem, Scattering resonances, Dirichlet-to-Neumann map, Arnoldi's method, Matrix functions
National Category
Computational Mathematics
Research subject
Mathematics
Identifiers
urn:nbn:se:umu:diva-138325 (URN)10.1016/j.cam.2017.08.012 (DOI)000415783000014 ()2-s2.0-85029359070 (Scopus ID)
2017-08-212017-08-212023-03-24Bibliographically approved