Open this publication in new window or tab >>Show others...
2019 (English)In: Frontiers in Microbiology, E-ISSN 1664-302X, Vol. 10, article id 1843Article in journal (Refereed) Published
Abstract [en]
Invasive mycoses remain underdiagnosed and difficult to treat. Hospitalized individuals with compromised immunity increase in number and constitute the main risk group for severe fungal infections. Current antifungal therapy is hampered by slow and insensitive diagnostics and frequent toxic side effects of standard antifungal drugs. Identification of new antifungal compounds with high efficacy and low toxicity is therefore urgently required. We investigated the antifungal activity of tempol, a cell-permeable nitroxide. To narrow down possible mode of action we used RNA-seq technology and metabolomics to probe for pathways specifically disrupted in the human fungal pathogen Candida albicans due to tempol administration. We found genes upregulated which are involved in iron homeostasis, mitochondrial stress, steroid synthesis, and amino acid metabolism. In an ex vivo whole blood infection, tempol treatment reduced C. albicans colony forming units and at the same time increased the release of pro-inflammatory cytokines, such as interleukin 8 (IL-8, monocyte chemoattractant protein-1, and macrophage migration inhibitory factor). In a systemic mouse model, tempol was partially protective with a significant reduction of fungal burden in the kidneys of infected animals during infection onset. The results obtained propose tempol as a promising new antifungal compound and open new opportunities for the future development of novel therapies.
Keywords
antifungal activity, redox active, immunomodulators, candidiasis, Candida albicans, Candida glabrata
National Category
Microbiology in the medical area
Research subject
Infectious Diseases
Identifiers
urn:nbn:se:umu:diva-151596 (URN)10.3389/fmicb.2019.01843 (DOI)000481763300001 ()31481939 (PubMedID)2-s2.0-85071902555 (Scopus ID)
Funder
Swedish Research Council, 2014-02281The Kempe Foundations, 1453
Note
Originally included in thesis in manuscript form
2018-09-072018-09-072024-07-02Bibliographically approved