Open this publication in new window or tab >>2008 (English)In: Manuscripta mathematica, ISSN 0025-2611, E-ISSN 1432-1785, Vol. 127, no 3, p. 369-380Article in journal (Refereed) Published
Abstract [en]
A theorem of Beurling states that if f satisfies
, n = 1, 2,..., for some 0 < ρ < 2, on a real interval I, then f is analytic in a rhombus containing I. We study the corresponding problem for the quantum differences Δ n f (q, x), q > 1, n = 1, 2,..., for functions defined on (0, ∞) and prove quantitative and qualitative analogues of Beurling’s result. We also characterize the analyticity of f on subintervals of (0, ∞) in q-analytic terms.
Place, publisher, year, edition, pages
Berlin: Springer-Verlag, 2008
Keywords
quantum difference, quantum analysis, analyticity
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
urn:nbn:se:umu:diva-10136 (URN)10.1007/s00229-008-0213-8 (DOI)2-s2.0-53649085236 (Scopus ID)
2010-01-252008-06-192023-03-23Bibliographically approved