Umeå University's logo

umu.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (10 of 26) Show all publications
Becker, M., Conca, D. V., Dorma, N., Mistry, N., Hahlin, E., Frängsmyr, L., . . . Gerold, G. (2023). Efficient clathrin-mediated entry of enteric adenoviruses in human duodenal cells. Journal of Virology, 97(10)
Open this publication in new window or tab >>Efficient clathrin-mediated entry of enteric adenoviruses in human duodenal cells
Show others...
2023 (English)In: Journal of Virology, ISSN 0022-538X, E-ISSN 1098-5514, Vol. 97, no 10Article in journal (Refereed) Published
Abstract [en]

Enteric adenovirus types F40 and 41 (EAdVs) are a leading cause of diarrhea and diarrhea-associated death in young children and have recently been proposed to cause acute hepatitis in children. EAdVs have a unique capsid architecture and exhibit — unlike other human adenoviruses — a relatively strict tropism for gastrointestinal tissues with, to date, understudied infection mechanism and unknown target cells. In this study, we turn to potentially limiting host factors by comparing EAdV entry in cell lines with respiratory and intestinal origin by cellular perturbation, virus particle tracking, and transmission electron microscopy. Our analyses highlight kinetic advantages for EAdVs in duodenal HuTu80 cell infection and reveal a larger fraction of mobile particles, faster virus uptake, and infectious particle entry in intestinal cells. Moreover, EAdVs display a dependence on clathrin- and dynamin-dependent pathways in intestinal cells. Detailed knowledge of virus entry routes and host factor requirements is essential to understanding pathogenesis and developing new countermeasures. Hence, this study provides novel insights into the entry mechanisms of a medically important virus with emerging tropism in a cell line originating from a relevant tissue. IMPORTANCE Enteric adenoviruses have historically been difficult to grow in cell culture, which has resulted in lack of knowledge of host factors and pathways required for infection of these medically relevant viruses. Previous studies in non-intestinal cell lines showed slow infection kinetics and generated comparatively low virus yields compared to other adenovirus types. We suggest duodenum-derived HuTu80 cells as a superior cell line for studies to complement efforts using complex intestinal tissue models. We show that viral host cell factors required for virus entry differ between cell lines from distinct origins and demonstrate the importance of clathrin-mediated endocytosis.

Keywords
clathrin-mediated endocytosis, electron microscopy, enteric adenovirus, single particle tracking, virus entry
National Category
Microbiology in the medical area
Identifiers
urn:nbn:se:umu:diva-216662 (URN)10.1128/jvi.00770-23 (DOI)37823645 (PubMedID)2-s2.0-85175844402 (Scopus ID)
Funder
Swedish Research Council, 2020-06242Swedish Research Council, 2019-01472Knut and Alice Wallenberg FoundationKnut and Alice Wallenberg Foundation
Available from: 2023-11-27 Created: 2023-11-27 Last updated: 2023-11-28Bibliographically approved
Pulkkinen, L. I., Barrass, S. V., Lindgren, M., Pace, H., Överby, A. K., Anastasina, M., . . . Butcher, S. J. (2023). Simultaneous membrane and RNA binding by tick-borne encephalitis virus capsid protein. PLoS Pathogens, 19(2), Article ID e1011125.
Open this publication in new window or tab >>Simultaneous membrane and RNA binding by tick-borne encephalitis virus capsid protein
Show others...
2023 (English)In: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 19, no 2, article id e1011125Article in journal (Refereed) Published
Abstract [en]

Tick-borne encephalitis virus is an enveloped, pathogenic, RNA virus in the family Flaviviridae, genus Flavivirus. Viral particles are formed when the nucleocapsid, consisting of an RNA genome and multiple copies of the capsid protein, buds through the endoplasmic reticulum membrane and acquires the viral envelope and the associated proteins. The coordination of the nucleocapsid components to the sites of assembly and budding are poorly understood. Here, we investigate the interactions of the wild-type and truncated capsid proteins with membranes with biophysical methods and model membrane systems. We show that capsid protein initially binds membranes via electrostatic interactions with negatively-charged lipids, which is followed by membrane insertion. Additionally, we show that membrane-bound capsid protein can recruit viral genomic RNA. We confirm the biological relevance of the biophysical findings by using mass spectrometry to show that purified virions contain negatively-charged lipids. Our results suggest that nucleocapsid assembly is coordinated by negatively-charged membrane patches on the endoplasmic reticulum and that the capsid protein mediates direct contacts between the nucleocapsid and the membrane.

Place, publisher, year, edition, pages
Public Library of Science, 2023
National Category
Microbiology in the medical area
Identifiers
urn:nbn:se:umu:diva-205497 (URN)10.1371/journal.ppat.1011125 (DOI)000966733300001 ()36787339 (PubMedID)2-s2.0-85149054055 (Scopus ID)
Available from: 2023-03-14 Created: 2023-03-14 Last updated: 2023-09-05Bibliographically approved
Olofsson, S., Bally, M., Trybala, E. & Bergström, T. (2023). Structure and role of O-Linked glycans in viral envelope proteins. Annual review of virology, 10(1), 283-304
Open this publication in new window or tab >>Structure and role of O-Linked glycans in viral envelope proteins
2023 (English)In: Annual review of virology, E-ISSN 2327-0578, Vol. 10, no 1, p. 283-304Article, review/survey (Refereed) Published
Abstract [en]

N- and O-glycans are both important constituents of viral envelope glycoproteins. O-linked glycosylation can be initiated by any of 20 different human polypeptide O-acetylgalactosaminyl transferases, resulting in an important functional O-glycan heterogeneity. O-glycans are organized as solitary glycans or in clusters of multiple glycans forming mucin-like domains. They are functional both in the viral life cycle and in viral colonization of their host. Negatively charged O-glycans are crucial for the interactions between glycosaminoglycan-binding viruses and their host. A novel mechanism, based on controlled electrostatic repulsion, explains how such viruses solve the conflict between optimized viral attachment to target cells and efficient egress of progeny virus. Conserved solitary O-glycans appear important for viral uptake in target cells by contributing to viral envelope fusion. Dual roles of viral O-glycans in the host B cell immune response, either epitope blocking or epitope promoting, may be exploitable for vaccine development. Finally, specific virus-induced O-glycans may be involved in viremic spread.

Place, publisher, year, edition, pages
Annual Reviews, 2023
Keywords
attachment, chondroitin sulfate, egress, heparan sulfate, mucin-like domain, vaccine, virion
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
urn:nbn:se:umu:diva-215100 (URN)10.1146/annurev-virology-111821-121007 (DOI)37285578 (PubMedID)2-s2.0-85172941184 (Scopus ID)
Available from: 2023-10-13 Created: 2023-10-13 Last updated: 2023-10-13Bibliographically approved
Abidine, Y., Liu, L., Wallén, O., Trybala, E., Olofsson, S., Bergström, T. & Bally, M. (2022). Cellular Chondroitin Sulfate and the Mucin-like Domain of Viral Glycoprotein C Promote Diffusion of Herpes Simplex Virus 1 While Heparan Sulfate Restricts Mobility. Viruses, 14(8), Article ID 1836.
Open this publication in new window or tab >>Cellular Chondroitin Sulfate and the Mucin-like Domain of Viral Glycoprotein C Promote Diffusion of Herpes Simplex Virus 1 While Heparan Sulfate Restricts Mobility
Show others...
2022 (English)In: Viruses, E-ISSN 1999-4915, Vol. 14, no 8, article id 1836Article in journal (Refereed) Published
Abstract [en]

The diffusion of viruses at the cell membrane is essential to reach a suitable entry site and initiate subsequent internalization. Although many viruses take advantage of glycosaminoglycans (GAG) to bind to the cell surface, little is known about the dynamics of the virus–GAG interactions. Here, single-particle tracking of the initial interaction of individual herpes simplex virus 1 (HSV-1) virions reveals a heterogeneous diffusive behavior, regulated by cell-surface GAGs with two main diffusion types: confined and normal free. This study reports that different GAGs can have competing influences in mediating diffusion on the cells used here: chondroitin sulfate (CS) enhances free diffusion but hinders virus attachment to cell surfaces, while heparan sulfate (HS) promotes virus confinement and increases entry efficiency. In addition, the role that the viral mucin-like domains (MLD) of the HSV-1 glycoprotein C plays in facilitating the diffusion of the virus and accelerating virus penetration into cells is demonstrated. Together, our results shed new light on the mechanisms of GAG-regulated virus diffusion at the cell surface for optimal internalization. These findings may be extendable to other GAG-binding viruses.

Place, publisher, year, edition, pages
MDPI, 2022
Keywords
glycocalyx, glycocalyx, glycosaminoglycan, herpesvirus, mucin-like domain, single particle tracking, viral O-glycans, virus diffusion
National Category
Cell and Molecular Biology Biophysics
Identifiers
urn:nbn:se:umu:diva-199466 (URN)10.3390/v14081836 (DOI)000845137500001 ()36016458 (PubMedID)2-s2.0-85137388191 (Scopus ID)
Funder
Wenner-Gren Foundations, UPD2018-0193Knut and Alice Wallenberg FoundationSwedish Research Council, 2017-04029
Available from: 2022-09-26 Created: 2022-09-26 Last updated: 2024-01-17Bibliographically approved
Norling, K., Sjöberg, M., Bally, M., Zhdanov, V. P., Parveen, N. & Höök, F. (2022). Dissimilar Deformation of Fluid- and Gel-Phase Liposomes upon Multivalent Interaction with Cell Membrane Mimics Revealed Using Dual-Wavelength Surface Plasmon Resonance. Langmuir, 38(8), 2550-2560
Open this publication in new window or tab >>Dissimilar Deformation of Fluid- and Gel-Phase Liposomes upon Multivalent Interaction with Cell Membrane Mimics Revealed Using Dual-Wavelength Surface Plasmon Resonance
Show others...
2022 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 38, no 8, p. 2550-2560Article in journal (Refereed) Published
Abstract [en]

The mechanical properties of biological nanoparticles play a crucial role in their interaction with the cellular membrane, in particular for cellular uptake. This has significant implications for the design of pharmaceutical carrier particles. In this context, liposomes have become increasingly popular, among other reasons due to their customizability and easily varied physicochemical properties. With currently available methods, it is, however, not trivial to characterize the mechanical properties of nanoscopic liposomes especially with respect to the level of deformation induced upon their ligand-receptor-mediated interaction with laterally fluid cellular membranes. Here, we utilize the sensitivity of dual-wavelength surface plasmon resonance to probe the size and shape of bound liposomes (∼100 nm in diameter) as a means to quantify receptor-induced deformation during their interaction with a supported cell membrane mimic. By comparing biotinylated liposomes in gel and fluid phases, we demonstrate that fluid-phase liposomes are more prone to deformation than their gel-phase counterparts upon binding to the cell membrane mimic and that, as expected, the degree of deformation depends on the number of ligand-receptor pairs that are engaged in the multivalent binding.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2022
National Category
Physical Chemistry Biophysics
Identifiers
urn:nbn:se:umu:diva-192898 (URN)10.1021/acs.langmuir.1c03096 (DOI)000766043400016 ()35156833 (PubMedID)2-s2.0-85125117622 (Scopus ID)
Funder
Swedish Research Council, 2018-04900Knut and Alice Wallenberg Foundation, 2019-0577Swedish Foundation for Strategic Research , IRC15-0065
Available from: 2022-03-03 Created: 2022-03-03 Last updated: 2023-09-05Bibliographically approved
Liu, K.-C., Pace, H., Larsson, E., Hossain, S., Kabedev, A., Shukla, A., . . . Lundmark, R. (2022). Membrane insertion mechanism of the caveola coat protein Cavin1. Proceedings of the National Academy of Sciences of the United States of America, 119(25), Article ID 2202295119.
Open this publication in new window or tab >>Membrane insertion mechanism of the caveola coat protein Cavin1
Show others...
2022 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 119, no 25, article id 2202295119Article in journal (Refereed) Published
Abstract [en]

Caveolae are small plasma membrane invaginations, important for control of membrane tension, signaling cascades, and lipid sorting. The caveola coat protein Cavin1 is essential for shaping such high curvature membrane structures. Yet, a mechanistic understanding of how Cavin1 assembles at the membrane interface is lacking. Here, we used model membranes combined with biophysical dissection and computational modeling to show that Cavin1 inserts into membranes. We establish that initial phosphatidylinositol (4, 5) bisphosphate [PI(4,5)P2]-dependent membrane adsorption of the trimeric helical region 1 (HR1) of Cavin1 mediates the subsequent partial separation and membrane insertion of the individual helices. Insertion kinetics of HR1 is further enhanced by the presence of flanking negatively charged disordered regions, which was found important for the coassembly of Cavin1 with Caveolin1 in living cells. We propose that this intricate mechanism potentiates membrane curvature generation and facilitates dynamic rounds of assembly and disassembly of Cavin1 at the membrane.

Place, publisher, year, edition, pages
Proceedings of the National Academy of Sciences, 2022
Keywords
caveolae, Cavin1, membrane curvature, membrane-shaping protein, protein-lipid interactions
National Category
Biochemistry and Molecular Biology
Identifiers
urn:nbn:se:umu:diva-203198 (URN)10.1073/pnas.2202295119 (DOI)000838706900008 ()2-s2.0-85133725056 (Scopus ID)
Funder
Swedish Research Council, 2018-05973European CommissionThe Kempe FoundationsSwedish Cancer SocietyWallenberg Foundations
Available from: 2023-01-18 Created: 2023-01-18 Last updated: 2023-01-18Bibliographically approved
Nadeem, A., Berg, A., Pace, H., Alam, A., Toh, E., Ådén, J., . . . Wai, S. N. (2022). Protein-lipid interaction at low pH induces oligomerization of the MakA cytotoxin from Vibrio cholerae. eLIFE, 11, Article ID e73439.
Open this publication in new window or tab >>Protein-lipid interaction at low pH induces oligomerization of the MakA cytotoxin from Vibrio cholerae
Show others...
2022 (English)In: eLIFE, E-ISSN 2050-084X, Vol. 11, article id e73439Article in journal (Refereed) Published
Abstract [en]

The α-pore-forming toxins (α-PFTs) from pathogenic bacteria damage host cell membranes by pore formation. We demonstrate a remarkable, hitherto unknown mechanism by an α-PFT protein from Vibrio cholerae. As part of the MakA/B/E tripartite toxin, MakA is involved in membrane pore formation similar to other α-PFTs. In contrast, MakA in isolation induces tube-like structures in acidic endosomal compartments of epithelial cells in vitro. The present study unravels the dynamics of tubular growth, which occurs in a pH-, lipid-, and concentration-dependent manner. Within acidified organelle lumens or when incubated with cells in acidic media, MakA forms oligomers and remodels membranes into high-curvature tubes leading to loss of membrane integrity. A 3.7 Å cryo-electron microscopy structure of MakA filaments reveals a unique protein-lipid superstructure. MakA forms a pinecone-like spiral with a central cavity and a thin annular lipid bilayer embedded between the MakA transmembrane helices in its active α-PFT conformation. Our study provides insights into a novel tubulation mechanism of an α-PFT protein and a new mode of action by a secreted bacterial toxin.

Place, publisher, year, edition, pages
eLife Sciences Publications, Ltd, 2022
Keywords
Vibrio cholerae, MakA, lipid
National Category
Biochemistry and Molecular Biology
Identifiers
urn:nbn:se:umu:diva-192300 (URN)10.7554/eLife.73439 (DOI)2-s2.0-85124321786 (Scopus ID)
Funder
Swedish Research Council, 2018–02914Swedish Research Council, 2016–05009Swedish Research Council, 2019–01720Swedish Research Council, 2016–06963Swedish Research Council, 2019–02011Swedish Cancer Society, 2017–419Swedish Cancer Society, 2020–711The Kempe Foundations, JCK-1728The Kempe Foundations, SMK-1756.2The Kempe Foundations, SMK-1553The Kempe Foundations, JCK-1724The Kempe Foundations, SMK-1961Knut and Alice Wallenberg FoundationFamiljen Erling-Perssons Stiftelse
Available from: 2022-02-08 Created: 2022-02-08 Last updated: 2024-01-12Bibliographically approved
Nadeem, A., Nagampalli, R., Toh, E., Alam, A., Myint, S. L., Heidler, T., . . . Persson, K. (2021). A tripartite cytolytic toxin formed by Vibrio cholerae proteins with flagellum-facilitated secretion. Proceedings of the National Academy of Sciences of the United States of America, 118(47), Article ID e2111418118.
Open this publication in new window or tab >>A tripartite cytolytic toxin formed by Vibrio cholerae proteins with flagellum-facilitated secretion
Show others...
2021 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 118, no 47, article id e2111418118Article in journal (Refereed) Published
Abstract [en]

Vibrio cholerae, responsible for outbreaks of cholera disease, is a highly motile organism by virtue of a single flagellum. We describe how the flagellum facilitates the secretion of three V. cholerae proteins encoded by a hitherto-unrecognized genomic island. The proteins MakA/B/E can form a tripartite toxin that lyses erythrocytes and is cytotoxic to cultured human cells. A structural basis for the cytolytic activity of the Mak proteins was obtained by X-ray crystallography. Flagellum-facilitated secretion ensuring spatially coordinated delivery of Mak proteins revealed a role for the V. cholerae flagellum considered of particular significance for the bacterial environmental persistence. Our findings will pave the way for the development of diagnostics and therapeutic strategies against pathogenic Vibrionaceae.

National Category
Biochemistry and Molecular Biology
Research subject
Biochemistry
Identifiers
urn:nbn:se:umu:diva-191257 (URN)10.1073/pnas.2111418118 (DOI)000727697700014 ()34799450 (PubMedID)2-s2.0-85121209218 (Scopus ID)
Funder
Swedish Research Council, 2016-05009Swedish Research Council, 2018-02914Swedish Research Council, 2019-01720Swedish Research Council, 2007-08673The Kempe Foundations, SMK-1756.2The Kempe Foundations, SMK-1553The Kempe Foundations, JCK-1728Swedish Cancer Society, 2017-419The Kempe Foundations, SMK-1961Swedish Research Council
Available from: 2022-01-12 Created: 2022-01-12 Last updated: 2023-05-11Bibliographically approved
Bernasconi, V., Norling, K., Gribonika, I., Ong, L. C., Burazerovic, S., Parveen, N., . . . Lycke, N. (2021). A vaccine combination of lipid nanoparticles and a cholera toxin adjuvant derivative greatly improves lung protection against influenza virus infection. Mucosal Immunology, 14(2), 523-536
Open this publication in new window or tab >>A vaccine combination of lipid nanoparticles and a cholera toxin adjuvant derivative greatly improves lung protection against influenza virus infection
Show others...
2021 (English)In: Mucosal Immunology, ISSN 1933-0219, E-ISSN 1935-3456, Vol. 14, no 2, p. 523-536Article in journal (Refereed) Published
Abstract [en]

This is a proof-of-principle study demonstrating that the combination of a cholera toxin derived adjuvant, CTA1-DD, and lipid nanoparticles (LNP) can significantly improve the immunogenicity and protective capacity of an intranasal vaccine. We explored the self-adjuvanted universal influenza vaccine candidate, CTA1-3M2e-DD (FPM2e), linked to LNPs. We found that the combined vector greatly enhanced survival against a highly virulent PR8 strain of influenza virus as compared to when mice were immunized with FPM2e alone. The combined vaccine vector enhanced early endosomal processing and peptide presentation in dendritic cells and upregulated co-stimulation. The augmenting effect was CTA1-enzyme dependent. Whereas systemic anti-M2e antibody and CD4(+)T-cell responses were comparable to those of the soluble protein, the local respiratory tract IgA and the specific Th1 and Th17 responses were strongly enhanced. Surprisingly, the lung tissue did not exhibit gross pathology upon recovery from infection and M2e-specific lung resident CD4(+)T cells were threefold higher than in FPM2e-immunized mice. This study conveys optimism as to the protective ability of a combination vaccine based on LNPs and various forms of the CTA1-DD adjuvant platform, in general, and, more specifically, an important way forward to develop a universal vaccine against influenza.

Place, publisher, year, edition, pages
Springer Nature, 2021
National Category
Immunology in the medical area
Identifiers
urn:nbn:se:umu:diva-174736 (URN)10.1038/s41385-020-0334-2 (DOI)000560269000001 ()32807838 (PubMedID)2-s2.0-85089523447 (Scopus ID)
Available from: 2020-09-03 Created: 2020-09-03 Last updated: 2023-03-23Bibliographically approved
Trybala, E., Peerboom, N., Adamiak, B., Krzyzowska, M., Liljeqvist, J.-Å., Bally, M. & Bergström, T. (2021). Herpes simplex virus type 2 mucin-like glycoprotein mgg promotes virus release from the surface of infected cells. Viruses, 13(5), Article ID 887.
Open this publication in new window or tab >>Herpes simplex virus type 2 mucin-like glycoprotein mgg promotes virus release from the surface of infected cells
Show others...
2021 (English)In: Viruses, E-ISSN 1999-4915, Vol. 13, no 5, article id 887Article in journal (Refereed) Published
Abstract [en]

The contribution of virus components to liberation of herpes simplex virus type 2 (HSV-2) progeny virions from the surface of infected cells is poorly understood. We report that the HSV-2 mutant deficient in the expression of a mucin-like membrane-associated glycoprotein G (mgG) exhibited defect in the release of progeny virions from infected cells manifested by ~2 orders of magnitude decreased amount of infectious virus in a culture medium as compared to native HSV-2. Electron microscopy revealed that the mgG deficient virions were produced in infected cells and present at the cell surface. These virions could be forcibly liberated to a nearly native HSV-2 level by the treatment of cells with glycosaminoglycan (GAG)-mimicking oligosaccharides. Comparative assessment of the interaction of mutant and native virions with surface-immobilized chondroitin sulfate GAG chains revealed that while the mutant virions associated with GAGs ~fourfold more extensively, the lateral mobility of bound virions was much poorer than that of native virions. These data indicate that the mgG of HSV-2 balances the virus interaction with GAG chains, a feature critical to prevent trapping of the progeny virions at the surface of infected cells.

Place, publisher, year, edition, pages
MDPI, 2021
Keywords
herpes simplex virus type 2, glycoprotein mgG, mucin-like protein, virus release, glycosaminoglycans, single particle analysis
National Category
Microbiology in the medical area
Identifiers
urn:nbn:se:umu:diva-184053 (URN)10.3390/v13050887 (DOI)000654584700001 ()34065826 (PubMedID)2-s2.0-85107005981 (Scopus ID)
Available from: 2021-06-14 Created: 2021-06-14 Last updated: 2024-01-17Bibliographically approved
Projects
The role of cell-surface glycosaminoglycans in modulating virus binding, diffusion, and internalization on the cell membrane: a study of Herpes Simplex Virus [2017-04029_VR]; Umeå University
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-5865-8302

Search in DiVA

Show all publications