Umeå University's logo

umu.sePublications
Change search
Link to record
Permanent link

Direct link
Williams, Chloe
Publications (10 of 13) Show all publications
Pu, L., Wang, J., Nilsson, L., Zhao, L., Williams, C., Chi, G., . . . Chen, C. (2025). Shaker/Kv1 potassium channel SHK-1 protects against pathogen infection and oxidative stress in C. elegans. PLOS Genetics, 21(2), Article ID e1011554.
Open this publication in new window or tab >>Shaker/Kv1 potassium channel SHK-1 protects against pathogen infection and oxidative stress in C. elegans
Show others...
2025 (English)In: PLOS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 21, no 2, article id e1011554Article in journal (Refereed) Published
Abstract [en]

The Shaker/Kv1 subfamily of voltage-gated potassium (K+) channels is essential for modulating membrane excitability. Their loss results in prolonged depolarization and excessive calcium influx. These channels have also been implicated in a variety of other cellular processes, but the underlying mechanisms remain poorly understood. Through comprehensive screening of K+ channel mutants in C. elegans, we discovered that shk-1 mutants are highly susceptible to bacterial pathogen infection and oxidative stress. This vulnerability is associated with reduced glycogen levels and substantial mitochondrial dysfunction, including decreased ATP production and dysregulated mitochondrial membrane potential under stress conditions. SHK-1 is predominantly expressed and functions in body wall muscle to maintain glycogen storage and mitochondrial homeostasis. RNA-sequencing data reveal that shk-1 mutants have decreased expression of a set of cation-transporting ATPases (CATP), which are crucial for maintaining electrochemical gradients. Intriguingly, overexpressing catp-3, but not other catp genes, restores the depolarization of mitochondrial membrane potential under stress and enhances stress tolerance in shk-1 mutants. This finding suggests that increased catp-3 levels may help restore electrochemical gradients disrupted by shk-1 deficiency, thereby rescuing the phenotypes observed in shk-1 mutants. Overall, our findings highlight a critical role for SHK-1 in maintaining stress tolerance by regulating glycogen storage, mitochondrial homeostasis, and gene expression. They also provide insights into how Shaker/Kv1 channels participate in a broad range of cellular processes.

Place, publisher, year, edition, pages
Public Library of Science (PLoS), 2025
National Category
Molecular Biology Infectious Medicine Cell Biology
Identifiers
urn:nbn:se:umu:diva-235380 (URN)10.1371/journal.pgen.1011554 (DOI)001415949000001 ()39913540 (PubMedID)2-s2.0-85217033990 (Scopus ID)
Funder
Swedish Research Council, 2021-06602Swedish Research Council, 2022-06725Swedish Research Council, 2024-00409Swedish Research Council, 2022- 00981Swedish Research Council, 2018-02216Swedish Research Council, 2024-04141Swedish Cancer Society, 23 3102 PjSwedish Cancer Society, 2023-2821The Kempe Foundations, SMK21-0024The Kempe Foundations, JCSMK24-0012EU, European Research Council, 802653 OXYGEN SENSING
Available from: 2025-02-24 Created: 2025-02-24 Last updated: 2025-05-09Bibliographically approved
Ghosh, S., Tamilselvi, S., Williams, C., Jayaweera, S. W., Iashchishyn, I. A., Šulskis, D., . . . Morozova-Roche, L. (2024). ApoE isoforms inhibit amyloid aggregation of proinflammatory protein S100a9. International Journal of Molecular Sciences, 25(4), Article ID 2114.
Open this publication in new window or tab >>ApoE isoforms inhibit amyloid aggregation of proinflammatory protein S100a9
Show others...
2024 (English)In: International Journal of Molecular Sciences, ISSN 1661-6596, E-ISSN 1422-0067, Vol. 25, no 4, article id 2114Article in journal (Refereed) Published
Abstract [en]

Increasing evidence suggests that the calcium-binding and proinflammatory protein S100A9 is an important player in neuroinflammation-mediated Alzheimer's disease (AD). The amyloid co-aggregation of S100A9 with amyloid-beta (A beta) is an important hallmark of this pathology. Apolipoprotein E (ApoE) is also known to be one of the important genetic risk factors of AD. ApoE primarily exists in three isoforms, ApoE2 (Cys112/Cys158), ApoE3 (Cys112/Arg158), and ApoE4 (Arg112/Arg158). Even though the difference lies in just two amino acid residues, ApoE isoforms produce differential effects on the neuroinflammation and activation of the microglial state in AD. Here, we aim to understand the effect of the ApoE isoforms on the amyloid aggregation of S100A9. We found that both ApoE3 and ApoE4 suppress the aggregation of S100A9 in a concentration-dependent manner, even at sub-stoichiometric ratios compared to S100A9. These interactions lead to a reduction in the quantity and length of S100A9 fibrils. The inhibitory effect is more pronounced if ApoE isoforms are added in the lipid-free state versus lipidated ApoE. We found that, upon prolonged incubation, S100A9 and ApoE form low molecular weight complexes with stochiometric ratios of 1:1 and 2:1, which remain stable under SDS-gel conditions. These complexes self-assemble also under the native conditions; however, their interactions are transient, as revealed by glutaraldehyde cross-linking experiments and molecular dynamics (MD) simulation. MD simulation demonstrated that the lipid-binding C-terminal domain of ApoE and the second EF-hand calcium-binding motif of S100A9 are involved in these interactions. We found that amyloids of S100A9 are cytotoxic to neuroblastoma cells, and the presence of either ApoE isoforms does not change the level of their cytotoxicity. A significant inhibitory effect produced by both ApoE isoforms on S100A9 amyloid aggregation can modulate the amyloid-neuroinflammatory cascade in AD.

Place, publisher, year, edition, pages
MDPI, 2024
Keywords
amyloid, apolipoprotein E, proinflammatory, neurodegeneration, neuroinflammation, Alzheimer's disease, cytotoxicity, fibrils, inhibition
National Category
Neurosciences
Identifiers
urn:nbn:se:umu:diva-228711 (URN)10.3390/ijms25042114 (DOI)001170070200001 ()38396791 (PubMedID)2-s2.0-85187311676 (Scopus ID)
Available from: 2024-08-21 Created: 2024-08-21 Last updated: 2024-08-21Bibliographically approved
Zhou, X., Zhu, S., Li, J., Mateus, A., Williams, C., Gilthorpe, J. D. & Backman, L. J. (2024). Mechanical loading modulates AMPK and mTOR signaling in muscle cells. Journal of Proteome Research, 23(10), 4286-4295
Open this publication in new window or tab >>Mechanical loading modulates AMPK and mTOR signaling in muscle cells
Show others...
2024 (English)In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 23, no 10, p. 4286-4295Article in journal (Refereed) Published
Abstract [en]

Skeletal muscle adaptation to exercise involves various phenotypic changes that enhance the metabolic and contractile functions. One key regulator of these adaptive responses is the activation of AMPK, which is influenced by exercise intensity. However, the mechanistic understanding of AMPK activation during exercise remains incomplete. In this study, we utilized an in vitro model to investigate the effects of mechanical loading on AMPK activation and its interaction with the mTOR signaling pathway. Proteomic analysis of muscle cells subjected to static loading (SL) revealed distinct quantitative protein alterations associated with RNA metabolism, with 10% SL inducing the most pronounced response compared to lower intensities of 5% and 2% as well as the control. Additionally, 10% SL suppressed RNA and protein synthesis while activating AMPK and inhibiting the mTOR pathway. We also found that SRSF2, necessary for pre-mRNA splicing, is regulated by AMPK and mTOR signaling, which, in turn, is regulated in an intensity-dependent manner by SL with the highest expression in 2% SL. Further examination showed that the ADP/ATP ratio was increased after 10% SL compared to the control and that SL induced changes in mitochondrial biogenesis. Furthermore, Seahorse assay results indicate that 10% SL enhances mitochondrial respiration. These findings provide novel insights into the cellular responses to mechanical loading and shed light on the intricate AMPK-mTOR regulatory network in muscle cells.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2024
Keywords
ADP/ATP ratio, AMPK, exercise adaptation, mechanical loading, mitochondrial biogenesis, mTOR, protein synthesis, proteomics analysis, RNA sequencing, skeletal muscle
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:umu:diva-229419 (URN)10.1021/acs.jproteome.4c00242 (DOI)001302852000001 ()39213513 (PubMedID)2-s2.0-85202738975 (Scopus ID)
Funder
Åke Wiberg Foundation, M20-0236Åke Wiberg Foundation, M22-0008Swedish Research Council, P2022-0010Swedish Research Council, P2023-0011Swedish Research Council, P2024-0001The Kempe Foundations, JCK-2032.2
Available from: 2024-09-09 Created: 2024-09-09 Last updated: 2024-10-28Bibliographically approved
Marsili, L., Davis, J. L., Espay, A. J., Gilthorpe, J. D., Williams, C., Kauffman, M. A. & Porollo, A. (2024). SOD1-related cerebellar ataxia and motor neuron disease: Cp variant as functional modifier?. Cerebellum, 23, 205-209
Open this publication in new window or tab >>SOD1-related cerebellar ataxia and motor neuron disease: Cp variant as functional modifier?
Show others...
2024 (English)In: Cerebellum, ISSN 1473-4222, E-ISSN 1473-4230, Vol. 23, p. 205-209Article in journal (Refereed) Published
Abstract [en]

We describe a novel superoxide dismutase (SOD1) mutation-associated clinical phenotype of cerebellar ataxia and motor neuron disease with a variant in the ceruloplasmin (Cp) gene, which may have possibly contributed to a multi-factorial phenotype, supported by genetic and protein structure analyses.

Place, publisher, year, edition, pages
Springer Nature, 2024
Keywords
Amyotrophic lateral sclerosis, Cerebellar ataxia, Ceruloplasmin, Neurodegeneration, SOD1
National Category
Neurosciences Neurology
Identifiers
urn:nbn:se:umu:diva-205011 (URN)10.1007/s12311-023-01527-3 (DOI)000932029400002 ()36757662 (PubMedID)2-s2.0-85147710255 (Scopus ID)
Available from: 2023-02-22 Created: 2023-02-22 Last updated: 2024-04-26Bibliographically approved
Tsioras, K., Smith, K. C., Edassery, S. L., Garjani, M., Li, Y., Williams, C., . . . Kiskinis, E. (2023). Analysis of proteome-wide degradation dynamics in ALS SOD1 iPSC-derived patient neurons reveals disrupted VCP homeostasis. Cell Reports, 42(10), Article ID 113160.
Open this publication in new window or tab >>Analysis of proteome-wide degradation dynamics in ALS SOD1 iPSC-derived patient neurons reveals disrupted VCP homeostasis
Show others...
2023 (English)In: Cell Reports, E-ISSN 2211-1247, Vol. 42, no 10, article id 113160Article in journal (Refereed) Published
Abstract [en]

Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS) through gain-of-function effects, yet the mechanisms by which misfolded mutant SOD1 (mutSOD1) protein impairs human motor neurons (MNs) remain unclear. Here, we use induced-pluripotent-stem-cell-derived MNs coupled to metabolic stable isotope labeling and mass spectrometry to investigate proteome-wide degradation dynamics. We find several proteins, including the ALS-causal valosin-containing protein (VCP), which predominantly acts in proteasome degradation and autophagy, that degrade slower in mutSOD1 relative to isogenic control MNs. The interactome of VCP is altered in mutSOD1 MNs in vitro, while VCP selectively accumulates in the affected motor cortex of ALS-SOD1 patients. Overexpression of VCP rescues mutSOD1 toxicity in MNs in vitro and in a C. elegans model in vivo, in part due to its ability to modulate the degradation of insoluble mutSOD1. Our results demonstrate that VCP contributes to mutSOD1-dependent degeneration, link two distinct ALS-causal genes, and highlight selective protein degradation impairment in ALS pathophysiology.

Place, publisher, year, edition, pages
Elsevier, 2023
Keywords
ALS, amyotrophic lateral sclerosis, CP: Neuroscience, CP: Stem cell research, iPSCs, motor neurons, protein degradation, SILAC-based mass spectrometry, SOD1, ubiquitin, VCP/p97
National Category
Cell and Molecular Biology Cell Biology
Identifiers
urn:nbn:se:umu:diva-215749 (URN)10.1016/j.celrep.2023.113160 (DOI)001105725700001 ()37776851 (PubMedID)2-s2.0-85174155270 (Scopus ID)
Funder
NIH (National Institutes of Health)Swedish Research Council, 2019-01634
Available from: 2023-11-02 Created: 2023-11-02 Last updated: 2025-04-24Bibliographically approved
Pu, L., Wang, J., Lu, Q., Nilsson, L., Philbrook, A., Pandey, A., . . . Chen, C. (2023). Dissecting the genetic landscape of GPCR signaling through phenotypic profiling in  C. elegans. Nature Communications, 14, Article ID 8410.
Open this publication in new window or tab >>Dissecting the genetic landscape of GPCR signaling through phenotypic profiling in  C. elegans
Show others...
2023 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 14, article id 8410Article in journal (Refereed) Published
Abstract [en]

G protein-coupled receptors (GPCRs) mediate responses to various extracellular and intracellular cues. However, the large number of GPCR genes and their substantial functional redundancy make it challenging to systematically dissect GPCR functions in vivo. Here, we employ a CRISPR/Cas9-based approach, disrupting 1654 GPCR-encoding genes in 284 strains and mutating 152 neuropeptide-encoding genes in 38 strains in C. elegans. These two mutant libraries enable effective deorphanization of chemoreceptors, and characterization of receptors for neuropeptides in various cellular processes. Mutating a set of closely related GPCRs in a single strain permits the assignment of functions to GPCRs with functional redundancy. Our analyses identify a neuropeptide that interacts with three receptors in hypoxia-evoked locomotory responses, unveil a collection of regulators in pathogen-induced immune responses, and define receptors for the volatile food-related odorants. These results establish our GPCR and neuropeptide mutant libraries as valuable resources for the C. elegans community to expedite studies of GPCR signaling in multiple contexts.

Place, publisher, year, edition, pages
Springer Nature, 2023
National Category
Neurosciences
Identifiers
urn:nbn:se:umu:diva-217489 (URN)10.1038/s41467-023-44177-z (DOI)001127589400005 ()38110404 (PubMedID)2-s2.0-85180225404 (Scopus ID)
Funder
Swedish Research Council, 2018-02914Swedish Research Council, 2021-06602Swedish Research Council, 2018-02216
Note

Originally included in thesis in manuscript form. 

Available from: 2023-12-05 Created: 2023-12-05 Last updated: 2025-04-24Bibliographically approved
Pateras, I. S., Williams, C., Gianniou, D. D., Margetis, A. T., Avgeris, M., Rousakis, P., . . . Frisan, T. (2023). Short term starvation potentiates the efficacy of chemotherapy in triple negative breast cancer via metabolic reprogramming. Journal of Translational Medicine, 21(1), Article ID 169.
Open this publication in new window or tab >>Short term starvation potentiates the efficacy of chemotherapy in triple negative breast cancer via metabolic reprogramming
Show others...
2023 (English)In: Journal of Translational Medicine, E-ISSN 1479-5876, Vol. 21, no 1, article id 169Article in journal (Refereed) Published
Abstract [en]

Background: Chemotherapy (CT) is central to the treatment of triple negative breast cancer (TNBC), but drug toxicity and resistance place strong restrictions on treatment regimes. Fasting sensitizes cancer cells to a range of chemotherapeutic agents and also ameliorates CT-associated adverse effects. However, the molecular mechanism(s) by which fasting, or short-term starvation (STS), improves the efficacy of CT is poorly characterized.

Methods: The differential responses of breast cancer or near normal cell lines to combined STS and CT were assessed by cellular viability and integrity assays (Hoechst and PI staining, MTT or H2DCFDA staining, immunofluorescence), metabolic profiling (Seahorse analysis, metabolomics), gene expression (quantitative real-time PCR) and iRNA-mediated silencing. The clinical significance of the in vitro data was evaluated by bioinformatical integration of transcriptomic data from patient data bases: The Cancer Genome Atlas (TCGA), European Genome-phenome Archive (EGA), Gene Expression Omnibus (GEO) and a TNBC cohort. We further examined the translatability of our findings in vivo by establishing a murine syngeneic orthotopic mammary tumor-bearing model.

Results: We provide mechanistic insights into how preconditioning with STS enhances the susceptibility of breast cancer cells to CT. We showed that combined STS and CT enhanced cell death and increased reactive oxygen species (ROS) levels, in association with higher levels of DNA damage and decreased mRNA levels for the NRF2 targets genes NQO1 and TXNRD1 in TNBC cells compared to near normal cells. ROS enhancement was associated with compromised mitochondrial respiration and changes in the metabolic profile, which have a significant clinical prognostic and predictive value. Furthermore, we validate the safety and efficacy of combined periodic hypocaloric diet and CT in a TNBC mouse model.

Conclusions: Our in vitro, in vivo and clinical findings provide a robust rationale for clinical trials on the therapeutic benefit of short-term caloric restriction as an adjuvant to CT in triple breast cancer treatment.

Place, publisher, year, edition, pages
BioMed Central (BMC), 2023
Keywords
Breast cancer, Caloric restriction, Fasting, Metabolic reprogramming, Mitochondria, Oncological treatment, Oxidative stress, Reactive oxygen species, Starvation, Triple negative breast cancer
National Category
Cell and Molecular Biology Cancer and Oncology
Identifiers
urn:nbn:se:umu:diva-205797 (URN)10.1186/s12967-023-03935-9 (DOI)000943526300004 ()36869333 (PubMedID)2-s2.0-85149714467 (Scopus ID)
Funder
The Kempe Foundations, JCK-1526The Kempe Foundations, KCK-1620Swedish Research Council, 2021-00960Swedish Cancer Society, 2017/315The Kempe Foundations, JCK-1826Cancerforskningsfonden i Norrland, AMP20-993Cancerforskningsfonden i Norrland, AMP 17-884
Available from: 2023-03-28 Created: 2023-03-28 Last updated: 2024-07-04Bibliographically approved
Günther, R., Pal, A., Williams, C., Zimyanin, V. L., Liehr, M., von Neubeck, C., . . . Hermann, A. (2022). Alteration of Mitochondrial Integrity as Upstream Event in the Pathophysiology of SOD1-ALS. Cells, 11(7), Article ID 1246.
Open this publication in new window or tab >>Alteration of Mitochondrial Integrity as Upstream Event in the Pathophysiology of SOD1-ALS
Show others...
2022 (English)In: Cells, E-ISSN 2073-4409, Vol. 11, no 7, article id 1246Article in journal (Refereed) Published
Abstract [en]

Little is known about the early pathogenic events by which mutant superoxide dismutase 1 (SOD1) causes amyotrophic lateral sclerosis (ALS). This lack of mechanistic understanding is a major barrier to the development and evaluation of efficient therapies. Although protein aggregation is known to be involved, it is not understood how mutant SOD1 causes degeneration of motoneurons (MNs). Previous research has relied heavily on the overexpression of mutant SOD1, but the clinical relevance of SOD1 overexpression models remains questionable. We used a human induced pluripotent stem cell (iPSC) model of spinal MNs and three different endogenous ALS-associated SOD1 mutations (D90Ahom, R115Ghet or A4Vhet) to investigate early cellular disturbances in MNs. Although enhanced misfolding and aggregation of SOD1 was induced by proteasome inhibition, it was not affected by activation of the stress granule pathway. Interestingly, we identified loss of mitochondrial, but not lysosomal, integrity as the earliest common pathological phenotype, which preceded elevated levels of insoluble, aggregated SOD1. A super-elongated mitochondrial morphology with impaired inner mitochondrial membrane potential was a unifying feature in mutant SOD1 iPSC-derived MNs. Impaired mitochondrial integrity was most prominent in mutant D90Ahom MNs, whereas both soluble disordered and detergent-resistant misfolded SOD1 was more prominent in R115Ghet and A4Vhet mutant lines. Taking advantage of patient-specific models of SOD1-ALS in vitro, our data suggest that mitochondrial dysfunction is one of the first crucial steps in the pathogenic cascade that leads to SOD1-ALS and also highlights the need for individualized medical approaches for SOD1-ALS.

Place, publisher, year, edition, pages
MDPI, 2022
Keywords
ALS1, axonal trafficking, live cell imaging, mitochondria, SOD1
National Category
Neurology
Identifiers
urn:nbn:se:umu:diva-193795 (URN)10.3390/cells11071246 (DOI)000781321900001 ()35406813 (PubMedID)2-s2.0-85127602913 (Scopus ID)
Funder
Swedish Research Council, VR-MH 2019-01634
Available from: 2022-05-06 Created: 2022-05-06 Last updated: 2023-03-24Bibliographically approved
Leppert, A., Chen, G., Lianoudaki, D., Williams, C., Zhong, X., Gilthorpe, J. D., . . . Johansson, J. (2022). ATP-independent molecular chaperone activity generated under reducing conditions. Protein Science, 31(8), Article ID e4378.
Open this publication in new window or tab >>ATP-independent molecular chaperone activity generated under reducing conditions
Show others...
2022 (English)In: Protein Science, ISSN 0961-8368, E-ISSN 1469-896X, Vol. 31, no 8, article id e4378Article in journal (Refereed) Published
Abstract [en]

Molecular chaperones are essential to maintain proteostasis. While the functions of intracellular molecular chaperones that oversee protein synthesis, folding and aggregation, are established, those specialized to work in the extracellular environment are less understood. Extracellular proteins reside in a considerably more oxidizing milieu than cytoplasmic proteins and are stabilized by abundant disulfide bonds. Hence, extracellular proteins are potentially destabilized and sensitive to aggregation under reducing conditions. We combine biochemical and mass spectrometry experiments and elucidate that the molecular chaperone functions of the extracellular protein domain Bri2 BRICHOS only appear under reducing conditions, through the assembly of monomers into large polydisperse oligomers by an intra- to intermolecular disulfide bond relay mechanism. Chaperone-active assemblies of the Bri2 BRICHOS domain are efficiently generated by physiological thiol-containing compounds and proteins, and appear in parallel with reduction-induced aggregation of extracellular proteins. Our results give insights into how potent chaperone activity can be generated from inactive precursors under conditions that are destabilizing to most extracellular proteins and thereby support protein stability/folding in the extracellular space.

Significance: Chaperones are essential to cells as they counteract toxic consequences of protein misfolding particularly under stress conditions. Our work describes a novel activation mechanism of an extracellular molecular chaperone domain, called Bri2 BRICHOS. This mechanism is based on reducing conditions that initiate small subunits to assemble into large oligomers via a disulfide relay mechanism. Activated Bri2 BRICHOS inhibits reduction-induced aggregation of extracellular proteins and could be a means to boost proteostasis in the extracellular environment upon reductive stress.

Place, publisher, year, edition, pages
John Wiley & Sons, 2022
Keywords
ATP-independent molecular chaperone, Bri2 BRICHOS, BRICHOS domain, disulfide bond formation, extracellular protein aggregation
National Category
Biochemistry Molecular Biology Cell and Molecular Biology
Identifiers
urn:nbn:se:umu:diva-198486 (URN)10.1002/pro.4378 (DOI)000823698600001 ()35900025 (PubMedID)2-s2.0-85135199147 (Scopus ID)
Funder
Åhlén-stiftelsenSwedish Cancer SocietyGun och Bertil Stohnes StiftelseMagnus Bergvall FoundationOlle Engkvists stiftelseHedlund foundationStiftelsen Gamla TjänarinnorStiftelsen Sigurd och Elsa Goljes minneAlzheimerfondenSwedish Foundation for Strategic ResearchSwedish Research Council, 2016-01967Swedish Research Council, 2019-01634Swedish Research Council, 2019-01961
Available from: 2022-08-11 Created: 2022-08-11 Last updated: 2025-02-20Bibliographically approved
Devoy, A., Price, G., De Giorgio, F., Bunton-Stasyshyn, R., Thompson, D., Gasco, S., . . . Cunningham, T. J. (2021). Generation and analysis of innovative genomically humanized knockin SOD1, TARDBP (TDP-43), and FUS mouse models. iScience, 24(12), Article ID 103463.
Open this publication in new window or tab >>Generation and analysis of innovative genomically humanized knockin SOD1, TARDBP (TDP-43), and FUS mouse models
Show others...
2021 (English)In: iScience, E-ISSN 2589-0042 , Vol. 24, no 12, article id 103463Article in journal (Refereed) Published
Abstract [en]

Amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) is a fatal neurodegenerative disorder, and continued innovation is needed for improved understanding and for developing therapeutics. We have created next-generation genomically humanized knockin mouse models, by replacing the mouse genomic region of Sod1, Tardbp (TDP-43), and Fus, with their human orthologs, preserving human protein biochemistry and splicing with exons and introns intact. We establish a new standard of large knockin allele quality control, demonstrating the utility of indirect capture for enrichment of a genomic region of interest followed by Oxford Nanopore sequencing. Extensive analysis shows that homozygous humanized animals only express human protein at endogenous levels. Characterization of humanized FUS animals showed that they are phenotypically normal throughout their lifespan. These humanized strains are vital for preclinical assessment of interventions and serve as templates for the addition of coding or non-coding human ALS/FTD mutations to dissect disease pathomechanisms, in a physiological context.

Place, publisher, year, edition, pages
Elsevier, 2021
Keywords
Model organism, Neurogenetics, Neuroscience
National Category
Neurosciences
Research subject
Neurology
Identifiers
urn:nbn:se:umu:diva-193605 (URN)10.1016/j.isci.2021.103463 (DOI)000740245300011 ()34988393 (PubMedID)2-s2.0-85119931487 (Scopus ID)
Available from: 2022-04-07 Created: 2022-04-07 Last updated: 2022-04-07Bibliographically approved
Organisations

Search in DiVA

Show all publications