Umeå University's logo

umu.sePublications
Change search
Link to record
Permanent link

Direct link
Nagampalli, RaghavendraORCID iD iconorcid.org/0000-0001-7382-130x
Publications (2 of 2) Show all publications
Jaiman, D., Nagampalli, R. & Persson, K. (2023). A comparative analysis of lipoprotein transport proteins: LolA and LolB from Vibrio cholerae and LolA from Porphyromonas gingivalis. Scientific Reports, 13(1), Article ID 6605.
Open this publication in new window or tab >>A comparative analysis of lipoprotein transport proteins: LolA and LolB from Vibrio cholerae and LolA from Porphyromonas gingivalis
2023 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 13, no 1, article id 6605Article in journal (Refereed) Published
Abstract [en]

In Gram-negative bacteria, N-terminal lipidation is a signal for protein trafficking from the inner membrane (IM) to the outer membrane (OM). The IM complex LolCDE extracts lipoproteins from the membrane and moves them to the chaperone LolA. The LolA-lipoprotein complex crosses the periplasm after which the lipoprotein is anchored to the OM. In γ-proteobacteria anchoring is assisted by the receptor LolB, while a corresponding protein has not been identified in other phyla. In light of the low sequence similarity between Lol-systems from different phyla and that they may use different Lol components, it is crucial to compare representative proteins from several species. Here we present a structure-function study of LolA and LolB from two phyla: LolA from Porphyromonas gingivalis (phylum bacteroidota), and LolA and LolB from Vibrio cholerae (phylum proteobacteria). Despite large sequence differences, the LolA structures are very similar, hence structure and function have been conserved throughout evolution. However, an Arg-Pro motif crucial for function in γ-proteobacteria has no counterpart in bacteroidota. We also show that LolA from both phyla bind the antibiotic polymyxin B whereas LolB does not. Collectively, these studies will facilitate the development of antibiotics as they provide awareness of both differences and similarities across phyla.

Place, publisher, year, edition, pages
Springer Nature, 2023
National Category
Biochemistry and Molecular Biology Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
urn:nbn:se:umu:diva-207883 (URN)10.1038/s41598-023-33705-y (DOI)000997547300091 ()37095149 (PubMedID)2-s2.0-85153687027 (Scopus ID)
Funder
Swedish Research Council, 2007-08673Swedish Research Council, 2016-05009Lars Hierta Memorial Foundation
Available from: 2023-05-08 Created: 2023-05-08 Last updated: 2023-09-05Bibliographically approved
Nadeem, A., Nagampalli, R., Toh, E., Alam, A., Myint, S. L., Heidler, T., . . . Persson, K. (2021). A tripartite cytolytic toxin formed by Vibrio cholerae proteins with flagellum-facilitated secretion. Proceedings of the National Academy of Sciences of the United States of America, 118(47), Article ID e2111418118.
Open this publication in new window or tab >>A tripartite cytolytic toxin formed by Vibrio cholerae proteins with flagellum-facilitated secretion
Show others...
2021 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 118, no 47, article id e2111418118Article in journal (Refereed) Published
Abstract [en]

Vibrio cholerae, responsible for outbreaks of cholera disease, is a highly motile organism by virtue of a single flagellum. We describe how the flagellum facilitates the secretion of three V. cholerae proteins encoded by a hitherto-unrecognized genomic island. The proteins MakA/B/E can form a tripartite toxin that lyses erythrocytes and is cytotoxic to cultured human cells. A structural basis for the cytolytic activity of the Mak proteins was obtained by X-ray crystallography. Flagellum-facilitated secretion ensuring spatially coordinated delivery of Mak proteins revealed a role for the V. cholerae flagellum considered of particular significance for the bacterial environmental persistence. Our findings will pave the way for the development of diagnostics and therapeutic strategies against pathogenic Vibrionaceae.

National Category
Biochemistry and Molecular Biology
Research subject
Biochemistry
Identifiers
urn:nbn:se:umu:diva-191257 (URN)10.1073/pnas.2111418118 (DOI)000727697700014 ()34799450 (PubMedID)2-s2.0-85121209218 (Scopus ID)
Funder
Swedish Research Council, 2016-05009Swedish Research Council, 2018-02914Swedish Research Council, 2019-01720Swedish Research Council, 2007-08673The Kempe Foundations, SMK-1756.2The Kempe Foundations, SMK-1553The Kempe Foundations, JCK-1728Swedish Cancer Society, 2017-419The Kempe Foundations, SMK-1961Swedish Research Council
Available from: 2022-01-12 Created: 2022-01-12 Last updated: 2023-05-11Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-7382-130x

Search in DiVA

Show all publications