Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exclusive juvenile predator resource promotes coexistence in a size-structured intraguild predation system
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Coexistence in size-structured intraguild predation systems is limited, and is predicted to occur when the IG predator exhibits a complete ontogenetic niche shift, has a similar asymptotic size as the IG prey, or has access to an exclusive resource. Here we experimentally test the effect of a juvenile IG predator exclusive resource by mimicking an ontogenetic habitat shift in the IG predator that switched either to a more or a less productive habitat at maturity. We show that coexistence depends on relative habitat productivities when refuges are present and cannibalism in the IG predator is low, but does not so when refuges are absent and cannibalism in the IG predator is substantial. Overall compared to previous experimental studies without an ontogenetic habitat shift, we how that an exclusive resource for juvenile IG predators promotes coexistence with context-dependent differences in the manifestation of this effect. 

Keywords [en]
population regulation, interaction strength, cannibalism, habitat complexity, life-history-omnivory, habitat productivity, ontogenetic habitat shift
National Category
Ecology
Identifiers
URN: urn:nbn:se:umu:diva-107025OAI: oai:DiVA.org:umu-107025DiVA, id: diva2:846478
Available from: 2015-08-17 Created: 2015-08-17 Last updated: 2018-06-07
In thesis
1. Ontogenetic bottlenecks: effects on intraguild predation systems and ecosystem efficiency
Open this publication in new window or tab >>Ontogenetic bottlenecks: effects on intraguild predation systems and ecosystem efficiency
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Size-dependent differences between individuals in size-structured organisms have fundamental effect on population and community dynamics. Intraguild predation (IGP) is one specifically interesting constellation that often arises when two size-structured populations interact. Ontogenetic bottlenecks that determine population size-structure are affected by both population intrinsic as well as population extrinsic factors, and are therefore context-dependent. Surprisingly, size-structured IGP systems have mainly been investigated theoretically and especially long-term empirical studies are widely lacking. In this thesis I investigate empirically how habitat complexity, interaction strength, and stage-specific resource availabilities affect population processes and their effects on the dynamics of a size-structured IGP system. I conducted multi-generation experiments in a size-structured IGP system, with the Least Killifish (Heterandria formosa) as IG prey and the Common Guppy (Poecilia reticulata) as IG predator. With no alternative resource next to the shared resource, IG predator and IG prey could not coexist. Weak interactions only increased IG prey and IG predator persistence times and observed exclusion patterns depended on habitat complexity. An alternative resource for either the juvenile IG predator or the juvenile IG prey on the other hand promoted coexistence. However, this coexistence was context-dependent. Ontogenetic bottlenecks played a central role in the dynamics of the size-structured IGP system in general. In the final study I show that an ontogenetic bottleneck can, through changes in stage-specific resource availabilities, be affected in a way that leads to increased trophic transfer efficiency with potential effects on higher trophic levels.

Overall, the results emphasize importance of the broader context in which size-structured communities are embedded. Especially, when managing natural communities it is important to account for the combined effects of size-structure, stage-specific resource availabilities, and habitat structure. Specifically, when managing species that connect habitats or ecosystems all life-stages’ environmental conditions must be consider in order to ensure strong predictive power of tools used for ecosystem management planning.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2015. p. 29
Keywords
mixed interactions, cannibalism, life-history omnivory, ontogenetic niche shift, biomass overcompensation, biomass production, ontogenetic asymmetry, indirect effects
National Category
Ecology
Research subject
biology; Animal Ecology
Identifiers
urn:nbn:se:umu:diva-105759 (URN)978-91-7601-299-4 (ISBN)
Public defence
2015-09-25, Lilla hörsalen (KB3A9), KBC-huset, Linnaeus väg 6, Umeå, 14:00 (English)
Opponent
Supervisors
Available from: 2015-09-04 Created: 2015-06-29 Last updated: 2018-06-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Reichstein, BirtePersson, Lennart

Search in DiVA

By author/editor
Reichstein, BirtePersson, Lennart
By organisation
Department of Ecology and Environmental Sciences
Ecology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 442 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf