Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt266",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1848",{id:"formSmash:j_idt1848",widgetVar:"widget_formSmash_j_idt1848",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

No full text in DiVA
#### Other links

Publisher's full textScopus
#### Authority records

Araujo-Cabarcas, Juan CarlosEngström, Christian
#### Search in DiVA

##### By author/editor

Araujo-Cabarcas, Juan CarlosEngström, Christian
##### By organisation

Department of Mathematics and Mathematical Statistics
##### In the same journal

Journal of Computational and Applied Mathematics
On the subject

Computational Mathematics
#### Search outside of DiVA

GoogleGoogle ScholarfindCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt2080",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[3,3,2,3,3,5,8,3,7,7]],title:"Visits for this publication",axes:{xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}},yaxis: {label:"",min:0,max:20,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}}},series:[{label:'diva2:1134522'}],ticks:["Jul -23","Aug -23","Sep -23","Oct -23","Nov -23","Dec -23","Jan -24","Feb -24","Mar -24","Apr -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 511 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt2178",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt227",{id:"formSmash:upper:j_idt227",widgetVar:"widget_formSmash_upper_j_idt227",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt232_j_idt235",{id:"formSmash:upper:j_idt232:j_idt235",widgetVar:"widget_formSmash_upper_j_idt232_j_idt235",target:"formSmash:upper:j_idt232:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Efficient resonance computations for Helmholtz problems based on a Dirichlet-to-Neumann mapPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2018 (English)In: Journal of Computational and Applied Mathematics, ISSN 0377-0427, E-ISSN 1879-1778, Vol. 330, p. 177-192Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Amsterdam: Elsevier, 2018. Vol. 330, p. 177-192
##### Keywords [en]

Nonlinear eigenvalue problems, Helmholtz problem, Scattering resonances, Dirichlet-to-Neumann map, Arnoldi's method, Matrix functions
##### National Category

Computational Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-138325DOI: 10.1016/j.cam.2017.08.012ISI: 000415783000014Scopus ID: 2-s2.0-85029359070OAI: oai:DiVA.org:umu-138325DiVA, id: diva2:1134522
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt783",{id:"formSmash:j_idt783",widgetVar:"widget_formSmash_j_idt783",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt796",{id:"formSmash:j_idt796",widgetVar:"widget_formSmash_j_idt796",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt804",{id:"formSmash:j_idt804",widgetVar:"widget_formSmash_j_idt804",multiple:true}); Available from: 2017-08-21 Created: 2017-08-21 Last updated: 2023-03-24Bibliographically approved
##### In thesis

We present an efficient procedure for computing resonances and resonant modes of Helmholtz problems posed in exterior domains. The problem is formulated as a nonlinear eigenvalue problem (NEP), where the nonlinearity arises from the use of a Dirichlet-to-Neumann map, which accounts for modeling unbounded domains. We consider a variational formulation and show that the spectrum consists of isolated eigenvalues of finite multiplicity that only can accumulate at infinity. The proposed method is based on a high order finite element discretization combined with a specialization of the Tensor Infinite Arnoldi method (TIAR). Using Toeplitz matrices, we show how to specialize this method to our specific structure. In particular we introduce a pole cancellation technique in order to increase the radius of convergence for computation of eigenvalues that lie close to the poles of the matrix-valued function. The solution scheme can be applied to multiple resonators with a varying refractive index that is not necessarily piecewise constant. We present two test cases to show stability, performance and numerical accuracy of the method. In particular the use of a high order finite element discretization together with TIAR results in an efficient and reliable method to compute resonances.

1. Reliable hp finite element computations of scattering resonances in nano optics$(function(){PrimeFaces.cw("OverlayPanel","overlay1316711",{id:"formSmash:j_idt1392:0:j_idt1396",widgetVar:"overlay1316711",target:"formSmash:j_idt1392:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt2104",{id:"formSmash:j_idt2104",widgetVar:"widget_formSmash_j_idt2104",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2160",{id:"formSmash:lower:j_idt2160",widgetVar:"widget_formSmash_lower_j_idt2160",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2161_j_idt2163",{id:"formSmash:lower:j_idt2161:j_idt2163",widgetVar:"widget_formSmash_lower_j_idt2161_j_idt2163",target:"formSmash:lower:j_idt2161:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});