Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
High-risk regions and outbreak modelling of tularemia in humans
Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). (Arcum)ORCID-id: 0000-0002-0768-8405
Vise andre og tillknytning
2017 (engelsk)Inngår i: Epidemiology and Infection, ISSN 0950-2688, E-ISSN 1469-4409, Vol. 145, nr 3, s. 482-490Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Sweden reports large and variable numbers of human tularemia cases, but the high-risk regions are anecdotally defined and factors explaining annual variations are poorly understood. Here, high-risk regions were identified by spatial cluster analysis on disease surveillance data for 1984-2012. Negative binomial regression with five previously validated predictors (including predicted mosquito abundance and predictors based on local weather data) was used to model the annual number of tularemia cases within the high-risk regions. Seven high-risk regions were identified with annual incidences of 3.8-44 cases/100 000 inhabitants, accounting for 56.4% of the tularemia cases but only 9.3% of Sweden's population. For all high-risk regions, most cases occurred between July and September. The regression models explained the annual variation of tularemia cases within most high-risk regions and discriminated between years with and without outbreaks. In conclusion, tularemia in Sweden is concentrated in a few high-risk regions and shows high annual and seasonal variations. We present reproducible methods for identifying tularemia high-risk regions and modelling tularemia cases within these regions. The results may help health authorities to target populations at risk and lay the foundation for developing an early warning system for outbreaks.

sted, utgiver, år, opplag, sider
CAMBRIDGE UNIV PRESS , 2017. Vol. 145, nr 3, s. 482-490
Emneord [en]
Epidemiology, modelling, spatial cluster analysis, tularemia
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-132814DOI: 10.1017/S0950268816002478ISI: 000393759000010PubMedID: 27806741Scopus ID: 2-s2.0-84994162551OAI: oai:DiVA.org:umu-132814DiVA, id: diva2:1092943
Tilgjengelig fra: 2017-05-04 Laget: 2017-05-04 Sist oppdatert: 2024-07-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Desvars-Larrive, AmélieSjöstedt, A.Ryden, Patrik

Søk i DiVA

Av forfatter/redaktør
Desvars-Larrive, AmélieSjöstedt, A.Ryden, Patrik
Av organisasjonen
I samme tidsskrift
Epidemiology and Infection

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 1008 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf