Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Efficient resonance computations for Helmholtz problems based on a Dirichlet-to-Neumann map
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik. (UMIT)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik. (UMIT)
Royal Institute of Technology.
2018 (engelsk)Inngår i: Journal of Computational and Applied Mathematics, ISSN 0377-0427, E-ISSN 1879-1778, Vol. 330, s. 177-192Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We present an efficient procedure for computing resonances and resonant modes of Helmholtz problems posed in exterior domains. The problem is formulated as a nonlinear eigenvalue problem (NEP), where the nonlinearity arises from the use of a Dirichlet-to-Neumann map, which accounts for modeling unbounded domains. We consider a variational formulation and show that the spectrum consists of isolated eigenvalues of finite multiplicity that only can accumulate at infinity. The proposed method is based on a high order finite element discretization combined with a specialization of the Tensor Infinite Arnoldi method (TIAR). Using Toeplitz matrices, we show how to specialize this method to our specific structure. In particular we introduce a pole cancellation technique in order to increase the radius of convergence for computation of eigenvalues that lie close to the poles of the matrix-valued function. The solution scheme can be applied to multiple resonators with a varying refractive index that is not necessarily piecewise constant. We present two test cases to show stability, performance and numerical accuracy of the method. In particular the use of a high order finite element discretization together with TIAR results in an efficient and reliable method to compute resonances.

sted, utgiver, år, opplag, sider
Amsterdam: Elsevier, 2018. Vol. 330, s. 177-192
Emneord [en]
Nonlinear eigenvalue problems, Helmholtz problem, Scattering resonances, Dirichlet-to-Neumann map, Arnoldi's method, Matrix functions
HSV kategori
Forskningsprogram
matematik
Identifikatorer
URN: urn:nbn:se:umu:diva-138325DOI: 10.1016/j.cam.2017.08.012ISI: 000415783000014Scopus ID: 2-s2.0-85029359070OAI: oai:DiVA.org:umu-138325DiVA, id: diva2:1134522
Tilgjengelig fra: 2017-08-21 Laget: 2017-08-21 Sist oppdatert: 2023-03-24bibliografisk kontrollert
Inngår i avhandling
1. Reliable hp finite element computations of scattering resonances in nano optics
Åpne denne publikasjonen i ny fane eller vindu >>Reliable hp finite element computations of scattering resonances in nano optics
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Eigenfrequencies are commonly studied in wave propagation problems, as they are important in the analysis of closed cavities such as a microwave oven. For open systems, energy leaks into infinity and therefore scattering resonances are used instead of eigenfrequencies. An interesting application where resonances take an important place is in whispering gallery mode resonators.

The objective of the thesis is the reliable and accurate approximation of scattering resonances using high order finite element methods. The discussion focuses on the electromagnetic scattering resonances in metal-dielectric nano-structures using a Drude-Lorentz model for the description of the material properties. A scattering resonance pair satisfies a reduced wave equationand an outgoing wave condition. In this thesis, the outgoing wave condition is replaced by a Dirichlet-to-Neumann map, or a Perfectly Matched Layer. For electromagnetic waves and for acoustic waves, the reduced wave equation is discretized with finite elements. As a result, the scattering resonance problem is transformed into a nonlinear eigenvalue problem.

In addition to the correct approximation of the true resonances, a large number of numerical solutions that are unrelated to the physical problem are also computed in the solution process. A new method based on a volume integral equation is developed to remove these false solutions.

The main results of the thesis are a novel method for removing false solutions of the physical problem, efficient solutions of non-linear eigenvalue problems, and a new a-priori based refinement strategy for high order finite element methods. The overall material in the thesis translates into a reliable and accurate method to compute scattering resonances in physics and engineering.

sted, utgiver, år, opplag, sider
Umeå: Umeå Universitet, 2019. s. 35
Serie
Research report in mathematics, ISSN 1653-0810 ; 67
Emneord
Scattering resonances, Helmholtz problems, pseudospectrum, Lippmann-Schwinger equation, finite element methods, nonlinear eigenvalue problems, spurious solutions
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-159154 (URN)978-91-7855-076-0 (ISBN)
Disputas
2019-06-13, MA121, MIT-huset, Umeå, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2019-05-23 Laget: 2019-05-20 Sist oppdatert: 2019-05-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Araujo-Cabarcas, Juan CarlosEngström, Christian

Søk i DiVA

Av forfatter/redaktør
Araujo-Cabarcas, Juan CarlosEngström, Christian
Av organisasjonen
I samme tidsskrift
Journal of Computational and Applied Mathematics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 511 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf