Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dimensions and projections
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
2006 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis concerns dimensions and projections of sets that could be described as fractals. The background is applied problems regarding analysis of human tissue. One way to characterize such complicated structures is to estimate the dimension. The existence of different types of dimensions makes it important to know about their properties and relations to each other. Furthermore, since medical images often are constructed by x-ray, it is natural to study projections.

This thesis consists of an introduction and a summary, followed by three papers.

Paper I, Anders Nilsson, Dimensions and Projections: An Overview and Relevant Examples, 2006. Manuscript.

Paper II, Anders Nilsson and Peter Wingren, Homogeneity and Non-coincidence of Hausdorff- and Box Dimensions for Subsets of ℝn, 2006. Submitted.

Paper III, Anders Nilsson and Fredrik Georgsson, Projective Properties of Fractal Sets, 2006. To be published in Chaos, Solitons and Fractals.

The first paper is an overview of dimensions and projections, together with illustrative examples constructed by the author. Some of the most frequently used types of dimensions are defined, i.e. Hausdorff dimension, lower and upper box dimension, and packing dimension. Some of their properties are shown, and how they are related to each other. Furthermore, theoretical results concerning projections are presented, as well as a computer experiment involving projections and estimations of box dimension.

The second paper concerns sets for which different types of dimensions give different values. Given three arbitrary and different numbers in (0,n), a compact set in ℝn is constructed with these numbers as its Hausdorff dimension, lower box dimension and upper box dimension. Most important in this construction, is that the resulted set is homogeneous in the sense that these dimension properties also hold for every non-empty and relatively open subset.

The third paper is about sets in space and their projections onto planes. Connections between the dimensions of the orthogonal projections and the dimension of the original set are discussed, as well as the connection between orthogonal projection and the type of projection corresponding to realistic x-ray. It is shown that the estimated box dimension of the orthogonal projected set and the realistic projected set can, for all practical purposes, be considered equal.

sted, utgiver, år, opplag, sider
Umeå: Matematik och matematisk statistik , 2006. , s. 86
Emneord [en]
Fractals, Hausdorff dimension, box dimension, packing dimension, projections
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-939ISBN: 91-7264-113-4 (tryckt)OAI: oai:DiVA.org:umu-939DiVA, id: diva2:145127
Veileder
Tilgjengelig fra: 2006-11-20 Laget: 2006-11-20 Sist oppdatert: 2016-08-31bibliografisk kontrollert
Delarbeid
1. Dimensions and projections: an overview and relevant examples
Åpne denne publikasjonen i ny fane eller vindu >>Dimensions and projections: an overview and relevant examples
Manuskript (Annet vitenskapelig)
Identifikatorer
urn:nbn:se:umu:diva-5570 (URN)
Tilgjengelig fra: 2006-11-20 Laget: 2006-11-20 Sist oppdatert: 2010-01-13bibliografisk kontrollert
2. Homogeneity and non-coincidence of Hausdorff and box dimensions for subsets of Rn
Åpne denne publikasjonen i ny fane eller vindu >>Homogeneity and non-coincidence of Hausdorff and box dimensions for subsets of Rn
2007 (engelsk)Inngår i: Studia Mathematica, ISSN 0039-3223, E-ISSN 1730-6337, Vol. 181, nr 3, s. 285-296Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A class of subsets of Rnis constructed that have certain homogeneity and non-coincidence properties with respect to Hausdorff and box dimensions. Foreach triple (r, s, t) of numbers in the interval (0, n] with r < s < t, a compact setK is constructed so that for any non-empty subset U relatively open in K, we have(dimH(U), dimB(U), dimB(U)) = (r, s, t). Moreover, 2−n ≤ Hr(K) ≤ 2nr/2.

sted, utgiver, år, opplag, sider
Polish Academy of Sciences, 2007
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-5571 (URN)10.4064/sm181-3-5 (DOI)000249896500005 ()2-s2.0-34548543814 (Scopus ID)
Merknad

Originally included in thesis in manuscript form.

Tilgjengelig fra: 2006-11-20 Laget: 2006-11-20 Sist oppdatert: 2022-03-22bibliografisk kontrollert
3. Projective properties of fractal sets
Åpne denne publikasjonen i ny fane eller vindu >>Projective properties of fractal sets
2008 (engelsk)Inngår i: Chaos, Solitons & Fractals, ISSN 0960-0779, E-ISSN 1873-2887, Vol. 35, nr 4, s. 786-794Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper, it is shown that a bound on the box dimension of a set in 3D can be established by estimating the box dimension of the discrete image of the projected set i.e. from an image in 2D. It is possible to impose limits on the Hausdorff dimension of the set by estimating the box dimension of the projected set. Furthermore, it is shown how a realistic X-ray projection can be viewed as equivalent to an ideal projection when regarding estimates of fractal dimensions.

sted, utgiver, år, opplag, sider
Oxford: Pergamon Press, 2008
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-41613 (URN)10.1016/j.chaos.2006.05.091 (DOI)000251006300019 ()2-s2.0-34748926923 (Scopus ID)
Eksternt samarbeid:
Tilgjengelig fra: 2011-03-30 Laget: 2011-03-30 Sist oppdatert: 2023-03-23bibliografisk kontrollert

Open Access i DiVA

fulltekst(109 kB)2113 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 109 kBChecksum SHA-1
910212503d6c7d141ae91713cbb9cc5b3f84f22806a3e422853cccda096b31cd3f09a547
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 2113 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 553 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf