Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Chick fetal organ spheroids as a model to study development and disease
Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM). Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).ORCID-id: 0000-0003-0232-1812
Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
PamGene International B.V, 's-Hertogenbosch, Wolvenhoek 10, Netherlands.
Vise andre og tillknytning
2021 (engelsk)Inngår i: BMC Molecular and Cell Biology, E-ISSN 2661-8850, Vol. 22, nr 1, artikkel-id 37Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

BACKGROUND: Organ culture models have been used over the past few decades to study development and disease. The in vitro three-dimensional (3D) culture system of organoids is well known, however, these 3D systems are both costly and difficult to culture and maintain. As such, less expensive, faster and less complex methods to maintain 3D cell culture models would complement the use of organoids. Chick embryos have been used as a model to study human biology for centuries, with many fundamental discoveries as a result. These include cell type induction, cell competence, plasticity and contact inhibition, which indicates the relevance of using chick embryos when studying developmental biology and disease mechanisms.

RESULTS: Here, we present an updated protocol that enables time efficient, cost effective and long-term expansion of fetal organ spheroids (FOSs) from chick embryos. Utilizing this protocol, we generated FOSs in an anchorage-independent growth pattern from seven different organs, including brain, lung, heart, liver, stomach, intestine and epidermis. These three-dimensional (3D) structures recapitulate many cellular and structural aspects of their in vivo counterpart organs and serve as a useful developmental model. In addition, we show a functional application of FOSs to analyze cell-cell interaction and cell invasion patterns as observed in cancer.

CONCLUSION: The establishment of a broad ranging and highly effective method to generate FOSs from different organs was successful in terms of the formation of healthy, proliferating 3D organ spheroids that exhibited organ-like characteristics. Potential applications of chick FOSs are their use in studies of cell-to-cell contact, cell fusion and tumor invasion under defined conditions. Future studies will reveal whether chick FOSs also can be applicable in scientific areas such as viral infections, drug screening, cancer diagnostics and/or tissue engineering.

sted, utgiver, år, opplag, sider
BioMed Central (BMC), 2021. Vol. 22, nr 1, artikkel-id 37
Emneord [en]
3D cell culture, Cancer, Chick, Development, Fetal organ spheroids, Invasion
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-186439DOI: 10.1186/s12860-021-00374-6ISI: 000669871300001PubMedID: 34225662Scopus ID: 2-s2.0-85110859058OAI: oai:DiVA.org:umu-186439DiVA, id: diva2:1582505
Forskningsfinansiär
Swedish Cancer Society, 18 0463Cancerforskningsfonden i NorrlandTilgjengelig fra: 2021-08-02 Laget: 2021-08-02 Sist oppdatert: 2025-01-27bibliografisk kontrollert
Inngår i avhandling
1. Understanding neural-cancer interactions and invasiveness in glioblastoma
Åpne denne publikasjonen i ny fane eller vindu >>Understanding neural-cancer interactions and invasiveness in glioblastoma
2025 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Alternativ tittel[sv]
Studera neuro-cancer interaktioner och invasivitet i glioblastom
Abstract [en]

Neural-cancer interactions involve the complex interplay between the nervous system and cancer cells, influencing tumour initiation, progression, and metastasis. In gliomas, these interactions mostly entail the secretion of paracrine growth factors, and electrochemical communication mediated by synapses between neurons and glioma cells. Understanding such interactions is vital for developing new therapeutic strategies against cancer aimed at modulating neuron-to-tumour communication. For this purpose, we have used in vivo mouse models of glioblastoma (GB) and established in vitro assays to study neural-cancer interactions, including the co-culture of cancer cells with either hiPSC-derived glutamatergic neurons or GABAergic interneurons, as well as 3D cultures of tumour spheres and fetal spheroids. The co-culture of hiPSC-derived neurons and cancer cells, including GB cells, was established both as a contact and non-contact assay, allowing to study the relevance of neural-cancer interactions for cancer cell proliferation and migration. While 3D spheroids generally replicate the organization and complexity of tissues effectively, our 3D invasion assay between organ spheroids and tumour spheres enabled us to specifically examine tumour invasion. This is exemplified by GB tumour spheres that exhibit reduced invasiveness of 3D brain spheroids upon repression of EGFR regulatory sequences.

Additionally, the co-culture systems enabled us to profile the transcriptome and chromatin accessibility of GB cells upon neural activity stimulation. GB cells in contact with either glutamatergic neurons or GABAergic interneurons exhibit differential gene expression and chromatin accessibility profiles. This provides new insights into the regulatory networks mediating neuron-to-glioma communication and highlights the relevance of GABAergic signalling in GB pathogenesis. This integrated approach holds promise for furthering our understanding of neural-cancer interactions, offering potential candidates to target neural pathways involved in tumour progression. 

sted, utgiver, år, opplag, sider
Umeå: Umeå University, 2025. s. 77
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 2341
Emneord
3D culture systems, glioblastoma, cancer neuroscience, neurogliomal synapses, GABAergic interneurons, glutamatergic neurons, synaptic signalling, chromatin profiling, chromatin accessibility, gene expression, gene regulation.
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-234626 (URN)978-91-8070-586-8 (ISBN)978-91-8070-587-5 (ISBN)
Disputas
2025-02-21, Aula Biologica, Biologihuset, Umeå, 09:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2025-01-31 Laget: 2025-01-27 Sist oppdatert: 2025-01-28bibliografisk kontrollert

Open Access i DiVA

fulltext(3210 kB)169 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3210 kBChecksum SHA-512
81f77b9873b29b8091ebc5a1a3225a2a6b479667daac07c7c8e527467bdf04f43c3c2711c3edcc9efd22063980ac755edd7adec15e6f43cfb8a9ba8b0232f50a
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Dakhel, SoranDavies, Wayne I. L.Joseph, Justin V.Remeseiro, SilviaGunhaga, Lena

Søk i DiVA

Av forfatter/redaktør
Dakhel, SoranDavies, Wayne I. L.Joseph, Justin V.Remeseiro, SilviaGunhaga, Lena
Av organisasjonen
I samme tidsskrift
BMC Molecular and Cell Biology

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 169 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 655 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf