Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning by Digging: A Differentiable Prediction Model for an Autonomous Wheel Loader
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
2022 (engelsk)Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
Abstract [en]

Wheel loaders are heavy duty machines that are ubiquitous on construction sites and in mines all over the world. Fully autonomous wheel loaders remains an open problem but the industry is hoping that increasing their level of autonomy will help to reduce costs and energy consumption while also increasing workplace safety. Operating a wheel loader efficiently requires dig plans that extend over multiple dig cycles and not just one at a time. This calls for a model that can predict both the performance of a dig action and the resulting shape of the pile. In this thesis project, we use simulations to develop a data-driven artificial neural network model that can predict the outcome of a dig action. The model is able to predict the wheel loader’s productivity with an average error of 7.3% and the altered shape of the pile with an average relative error of 4.5%. We also show that automatic differentiation techniques can be used to accurately differentiate the model with respect to input. This makes it possible to use gradient-based optimization methods to find the dig action that maximises the performance of the wheel loader.

sted, utgiver, år, opplag, sider
2022. , s. 40
Emneord [en]
Wheel loader, Deep learning, Autonomous, Multibody and soil dynamics
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-197165OAI: oai:DiVA.org:umu-197165DiVA, id: diva2:1675538
Eksternt samarbeid
Digital Physics, Umeå University
Fag / kurs
Examensarbete i teknisk fysik
Utdanningsprogram
Master of Science Programme in Engineering Physics
Presentation
2022-06-07, Nat.D.480, Naturvetarhuset, Universitetsvägen, 901 87, Umeå, 16:00 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2022-06-23 Laget: 2022-06-23 Sist oppdatert: 2022-06-23bibliografisk kontrollert

Open Access i DiVA

fulltext(3509 kB)476 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3509 kBChecksum SHA-512
eb10bf714e37dcabf8bd59503ed6fc980814cbb6689be332de2de773e6b2e2d5c8d44b10f59bdf718eb2c165dd6365d693337df1b90eae55ecffd305396ecfe9
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Fälldin, Arvid
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 511 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 976 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf