Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Expressibility of multiscale physics in deep networks
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
2022 (engelsk)Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
Abstract [en]

Motivated by the successes in the field of deep learning, the scientific community has been increasingly interested in neural networks that are able to reason about physics. As neural networks are universal approximators, they could in theory learn representations that are more efficient than traditional methods whenever improvements are theoretically possible. This thesis, done in collaboration with Algoryx, serves both as a review of the current research in this area and as an experimental investigation of a subset of the proposed methods. We focus on how useful these methods are as \textit{learnable simulators} of mechanical systems that are possibly constrained and multiscale. The experimental investigation considers low-dimensional problems with training data generated by either custom numerical integration or by use of the physics engine AGX Dynamics. A good learnable simulator should express some important properties such as being stable, accurate, generalizable, and fast. Importantly, a generalizable simulator must be able to represent reconfigurable environments, requiring a model known as a graph neural network (GNN). The experimental results show that black-box neural networks are limited to approximate physics in the states it has been trained on. The results also suggest that traditional message-passing GNNs have a limited ability to represent more challenging multiscale systems. This is currently the most widely used method to realize GNNs and thus raises concern as there is not much to be gained by investing time into a method with fundamental limitations. 

sted, utgiver, år, opplag, sider
2022.
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-197523OAI: oai:DiVA.org:umu-197523DiVA, id: diva2:1678353
Eksternt samarbeid
Algoryx Simulation AB
Fag / kurs
Examensarbete i teknisk fysik
Utdanningsprogram
Master of Science Programme in Engineering Physics
Veileder
Examiner
Tilgjengelig fra: 2022-06-29 Laget: 2022-06-29 Sist oppdatert: 2022-06-29bibliografisk kontrollert

Open Access i DiVA

fulltext(2359 kB)271 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2359 kBChecksum SHA-512
e0b2419a1b0f3a331ec898763144459ab5ac3c08a98009baa91d43e56e577e2a60a7bae8743e6b12a7f1c05e09ba6f473861cd96824d3af5825c462e697c477c
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 271 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 702 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf