Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A hybrid ensemble learning framework for zero-energy potential prediction of photovoltaic direct-driven air conditioners
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik. School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China.
College of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, China.
School of Artificial Intelligence, Hebei University of Technology, Tianjin, China.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
Vise andre og tillknytning
2023 (engelsk)Inngår i: Journal of Building Engineering, E-ISSN 2352-7102, Vol. 64, artikkel-id 105602Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Integrating renewable energy is a promising solution for buildings to achieve the net-zero-energy goal. Expanding real-time matching between renewable energy generation and building energy demand can help realize more enormous zero-energy potential in practice. However, there are few studies to investigate the real-time energy matching in renewable energy building design. Therefore, in this study, a hybrid ensemble learning framework is proposed for analyzing and predicting zero-energy potential in the real-time matching of photovoltaic direct-driven air conditioner (PVAC) systems. First, the datasets of zero-energy probability (ZEP) are generated under the three main climate regions in China, which are with consideration of the load flexibility of air conditioners and based on six important design variables. Second, a novel ensemble learning method named Extreme Gradient Boosting (XGBoost) is selected to predict ZEP and the Bayesian Optimization (BO) is adopted to identify the optimal hyperparameters and further improve the prediction performance. The statistical analysis shows that ZEP distributions are very different from one region to another one and the PVAC systems in Beijing are the easiest to achieve the zero-energy goal. Among all the variables, PV capacity is the most significant and positively related to ZEP. The prediction results show BO-XGBoost achieves more than 99% accuracy and outperforms other benchmark models in the ZEP prediction of three cities. In a word, this paper reveals BO-XGBoost is the most effective model for ZEP prediction and provides the framework for designers to utilize zero-energy potential analysis and prediction for the first time.

sted, utgiver, år, opplag, sider
Elsevier, 2023. Vol. 64, artikkel-id 105602
Emneord [en]
Bayesian optimization, Machine learning, Photovoltaic direct-driven air conditioners, Thermal comfort, Zero energy potential
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-201454DOI: 10.1016/j.jobe.2022.105602ISI: 000997281000001Scopus ID: 2-s2.0-85142748107OAI: oai:DiVA.org:umu-201454DiVA, id: diva2:1716715
Tilgjengelig fra: 2022-12-06 Laget: 2022-12-06 Sist oppdatert: 2023-09-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Lu, ChujieLu, WeizhuoOlofsson, Thomas

Søk i DiVA

Av forfatter/redaktør
Lu, ChujieLu, WeizhuoOlofsson, Thomas
Av organisasjonen
I samme tidsskrift
Journal of Building Engineering

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 406 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf