Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
ECFA: an efficient convergent firefly algorithm for solving task scheduling problems in cloud-edge computing
School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, China.
School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, China.
School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, China.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.ORCID-id: 0000-0003-4228-2774
Vise andre og tillknytning
2023 (engelsk)Inngår i: IEEE Transactions on Services Computing, E-ISSN 1939-1374, s. 1-14Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In cloud-edge computing paradigms, the integration of edge servers and task offloading mechanisms has posed new challenges to developing task scheduling strategies. This paper proposes an efficient convergent firefly algorithm (ECFA) for scheduling security-critical tasks onto edge servers and the cloud datacenter. The proposed ECFA uses a probability-based mapping operator to convert an individual firefly into a scheduling solution, in order to associate the firefly space with the solution space. Distinct from the standard FA, ECFA employs a low-complexity position update strategy to enhance computational efficiency in solution exploration. In addition, we provide a rigorous theoretical analysis to justify that ECFA owns the capability of converging to the global best individual in the firefly space. Furthermore, we introduce the concept of boundary traps for analyzing firefly movement trajectories, and investigate whether ECFA would fall into boundary traps during the evolutionary procedure under different parameter settings. We create various testing instances to evaluate the performance of ECFA in solving the cloud-edge scheduling problem, demonstrating its superiority over FA-based and other competing metaheuristics. Evaluation results also validate that the parameter range derived from the theoretical analysis can prevent our algorithm from falling into boundary traps.

sted, utgiver, år, opplag, sider
IEEE, 2023. s. 1-14
Emneord [en]
Cloud computing, cloud-edge computing, Convergence, convergence proof, firefly algorithm, Processor scheduling, Scheduling, Servers, Task analysis, task scheduling, Trajectory, trajectory analysis
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-212325DOI: 10.1109/TSC.2023.3293048Scopus ID: 2-s2.0-85164678733OAI: oai:DiVA.org:umu-212325DiVA, id: diva2:1783963
Forskningsfinansiär
The Kempe FoundationsTilgjengelig fra: 2023-07-25 Laget: 2023-07-25 Sist oppdatert: 2024-04-26bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Gu, Zonghua

Søk i DiVA

Av forfatter/redaktør
Gu, Zonghua
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Services Computing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 67 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf