Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A systematic review of the data, methods and environmental covariates used to map Aedes-borne arbovirus transmission risk
Department of Infectious Disease Epidemiology and Dynamics, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom; Centre for Mathematical Modelling of Infectious Diseases, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom.
Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
High Meadows Environmental Institute, Princeton University, NJ, Princeton, United States.
Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
Vise andre og tillknytning
2023 (engelsk)Inngår i: BMC Infectious Diseases, E-ISSN 1471-2334, Vol. 23, nr 1, artikkel-id 708Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Background: Aedes (Stegomyia)-borne diseases are an expanding global threat, but gaps in surveillance make comprehensive and comparable risk assessments challenging. Geostatistical models combine data from multiple locations and use links with environmental and socioeconomic factors to make predictive risk maps. Here we systematically review past approaches to map risk for different Aedes-borne arboviruses from local to global scales, identifying differences and similarities in the data types, covariates, and modelling approaches used.

Methods: We searched on-line databases for predictive risk mapping studies for dengue, Zika, chikungunya, and yellow fever with no geographical or date restrictions. We included studies that needed to parameterise or fit their model to real-world epidemiological data and make predictions to new spatial locations of some measure of population-level risk of viral transmission (e.g. incidence, occurrence, suitability, etc.).

Results: We found a growing number of arbovirus risk mapping studies across all endemic regions and arboviral diseases, with a total of 176 papers published 2002–2022 with the largest increases shortly following major epidemics. Three dominant use cases emerged: (i) global maps to identify limits of transmission, estimate burden and assess impacts of future global change, (ii) regional models used to predict the spread of major epidemics between countries and (iii) national and sub-national models that use local datasets to better understand transmission dynamics to improve outbreak detection and response. Temperature and rainfall were the most popular choice of covariates (included in 50% and 40% of studies respectively) but variables such as human mobility are increasingly being included. Surprisingly, few studies (22%, 31/144) robustly tested combinations of covariates from different domains (e.g. climatic, sociodemographic, ecological, etc.) and only 49% of studies assessed predictive performance via out-of-sample validation procedures.

Conclusions: Here we show that approaches to map risk for different arboviruses have diversified in response to changing use cases, epidemiology and data availability. We identify key differences in mapping approaches between different arboviral diseases, discuss future research needs and outline specific recommendations for future arbovirus mapping.

sted, utgiver, år, opplag, sider
BioMed Central (BMC), 2023. Vol. 23, nr 1, artikkel-id 708
Emneord [en]
Aedes-borne diseases, Arboviruses, Chikungunya, Dengue, Geostatistical models, Predictive modelling, Risk mapping, Yellow fever, Zika
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-215916DOI: 10.1186/s12879-023-08717-8Scopus ID: 2-s2.0-85174503799OAI: oai:DiVA.org:umu-215916DiVA, id: diva2:1809253
Forskningsfinansiär
NIH (National Institutes of Health), R35GM133439; R01AI168097; R01AI102918EU, Horizon Europe, 101057554Wellcome trust, 220211Tilgjengelig fra: 2023-11-02 Laget: 2023-11-02 Sist oppdatert: 2024-01-17bibliografisk kontrollert

Open Access i DiVA

fulltext(3010 kB)46 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3010 kBChecksum SHA-512
068e31a6de17ff6ab428075f52edb231b35a51370df9b8acddeae75d402f123a9e45d3e8a83c17c930763a3257679f607709a548fd324b225999e71e9799e03d
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Semenza, Jan C.

Søk i DiVA

Av forfatter/redaktør
Semenza, Jan C.
Av organisasjonen
I samme tidsskrift
BMC Infectious Diseases

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 46 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 212 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf