Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
AI-driven contextual advertising: toward relevant messaging without personal data
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0001-8503-0118
2024 (engelsk)Inngår i: Journal of Current Issues and Research in Advertising, ISSN 1064-1734Artikkel i tidsskrift (Fagfellevurdert) Epub ahead of print
Abstract [en]

In programmatic advertising, bids are increasingly based on knowledge of the surrounding media context. This shift toward contextual advertising is in part a counter-reaction to the current dependency on personal data, which is problematic from legal and ethical standpoints. The transition is accelerated by developments in artificial intelligence (AI), which allow for a deeper semantic analysis of the context and, by extension, more effective ad placement. We survey existing literature on the influence of context on the reception of an advertisement, focusing on three context factors: the applicability of the content and the ad, the affective tone of the content, and the involvement of the consumer. We then discuss how AI can leverage these priming effects to optimize ad placement through techniques such as reinforcement learning, data clustering, and sentiment analysis. This helps close the gap between the state of the art in advertising technology and the AI-driven targeting methodologies described in prior academic research.

sted, utgiver, år, opplag, sider
Routledge, 2024.
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-224265DOI: 10.1080/10641734.2024.2334939ISI: 001209522500001Scopus ID: 2-s2.0-85192195055OAI: oai:DiVA.org:umu-224265DiVA, id: diva2:1857623
Tilgjengelig fra: 2024-05-14 Laget: 2024-05-14 Sist oppdatert: 2024-05-14

Open Access i DiVA

fulltext(2117 kB)37 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2117 kBChecksum SHA-512
dc7b03a8eae4cda43f06835c1ac61bfdb8fa368b8076654b9b678f0ccd412e13782731ac154af505699b0283b455c197c0ec65fdd4b926a324139b236789f6b9
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Häglund, EmilBjörklund, Johanna

Søk i DiVA

Av forfatter/redaktør
Häglund, EmilBjörklund, Johanna
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 37 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 160 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf