Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Models for effective categorization and classification of texts into specific thematic groups (using gender and criminal themes as examples)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine.ORCID-id: 0000-0002-9826-0286
National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine.
National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine.
National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine.
2024 (engelsk)Inngår i: CLW-CoLInS 2024, computational linguistics workshop at Colins 2024: proceedings of the 8th international conference on computational linguistics and intelligent systems. Volume IV: computational linguistics workshop, Lviv, Ukraine, April 12-13, 2024 / [ed] Nina Khairova; Victoria Vysotska, CEUR-WS , 2024, Vol. IV, s. 37-49Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

An analysis of existing automated methods for text classification, used to develop an effective approach for automated text classification by thematic groups in the context of information related to criminal and gender themes, was conducted. Based on the analysis of classification methods, an algorithm for classifying texts by types of crime and gender was developed, information-linguistic and software for the task of distributing texts into thematic groups were developed, and the effectiveness of the developed application was assessed.

sted, utgiver, år, opplag, sider
CEUR-WS , 2024. Vol. IV, s. 37-49
Serie
CEUR Workshop Proceedings (CEUR-WS), ISSN 1613-0073 ; 3722
Emneord [en]
categorization, Classification, criminal justice theme, gender criminology, gender stereotypes, social practices, thematic groups
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-227967Scopus ID: 2-s2.0-85198743336OAI: oai:DiVA.org:umu-227967DiVA, id: diva2:1885255
Konferanse
CLW-2024: Computational Linguistics Workshop at 8th International Conference on Computational Linguistics and Intelligent Systems (CoLInS-2024), Lviv, Ukraine, April 12–13, 2024
Tilgjengelig fra: 2024-07-22 Laget: 2024-07-22 Sist oppdatert: 2025-02-07bibliografisk kontrollert

Open Access i DiVA

fulltext(724 kB)139 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 724 kBChecksum SHA-512
745d2674192ca8cb0e4a693572e1e812b27f5ddc1a8b69bf20c6013db7075c78785330aa295bf7505f9e2397da541b46110ed8585d2876b1730a99c0df668e7d
Type fulltextMimetype application/pdf

Andre lenker

ScopusProceedings

Person

Khairova, Nina

Søk i DiVA

Av forfatter/redaktør
Khairova, Nina
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 139 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 341 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf