Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Plasma physics at comets: what can we learn from laboratory experiments?
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.ORCID-id: 0000-0001-5379-1158
University of California-Los Angeles, United States.
Northumbria University, United Kingdom.
Universidade de Lisboa, Portugal.
Vise andre og tillknytning
2024 (engelsk)Inngår i: 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), IEEE, 2024, nr 2024, s. 163-163Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Diamagnetic cavities at comets were predicted already in the 1960s [1], and then observed at comet lP/Halley by the ESA/Giotto spacecraft in 1986 [2]. Recently, the ESA/Rosetta spacecraft spent two years orbiting comet 67P/Churyumov-Gerasimenko and encountered the diamagnetic cavity of comet 67P more than 700 times [3, 4]. Most encounters lasted a few minutes, with the duration varying from a few seconds up to more than 30 minutes. As the spacecraft moved very slowly (~lms-1), it can be considered stationary with respect to the plasma. Therefore, the quick succession of detections indicates that the boundary of the diamagnetic cavity moved over the spacecraft. Figure 1 (left) shows three diamagnetic cavity signatures observed with the plasma instruments on Rosetta on 16 September 2015 when the comet was close to perihelion. Rosetta was in the diamagnetic cavity during the periods of nearly zero magnetic field (marked by the coloured regions). Outside the cavity, the plasma was often characterised by a series of asymmetric, steepened waves which are visible in the magnetic field, as well as in the plasma density [5]. Since all observations to date have been made using a single spacecraft, the shape of the diamagnetic cavity boundary cannot be well constrained by measurements. However, it has been suggested, based on wave observations, that bulges on the cavity boundary move past the spacecraft, causing the latter to quickly move in and out of the cavity [6].

sted, utgiver, år, opplag, sider
IEEE, 2024. nr 2024, s. 163-163
Serie
International Conference on Electromagnetics in Advanced Applications, ISSN 2835-1355, E-ISSN 2766-2284
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-232244DOI: 10.1109/ICEAA61917.2024.10701783Scopus ID: 2-s2.0-85208714504ISBN: 9798350360981 (tryckt)ISBN: 9798350360974 (digital)OAI: oai:DiVA.org:umu-232244DiVA, id: diva2:1916722
Konferanse
2024 International Conference on Electromagnetics in Advanced Applications, (ICEAA), Lisboa, Portugal, 2-6 September 2024
Tilgjengelig fra: 2024-11-28 Laget: 2024-11-28 Sist oppdatert: 2024-11-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Gunell, Herbert

Søk i DiVA

Av forfatter/redaktør
Gunell, Herbert
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 45 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf