Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Ion escape from degenerate induced magnetospheres: the case of Mars
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Swedish Institute of Space Physics, Kiruna, Sweden.
Swedish Institute of Space Physics, Kiruna, Sweden.
Swedish Institute of Space Physics, Kiruna, Sweden.ORCID-id: 0000-0001-5494-5374
Swedish Institute of Space Physics, Kiruna, Sweden.ORCID-id: 0000-0003-0574-4423
Vise andre og tillknytning
2025 (engelsk)Inngår i: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 52, nr 12, artikkel-id e2025GL116161Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

When the cone angle of the interplanetary magnetic field (IMF) becomes small, induced magnetospheres of unmagnetized planets degenerate. Using hybrid simulations, we study ionospheric ion escape in a 4° cone angle case and compare it with the nominal 55° cone angle (Parker spiral) case. The total escape rate is 1.7×1⁢025 s−1, nearly an order of magnitude higher than the nominal rate of 2.2×1⁢024 s−1. The escape probability is four times higher. The unique feature of the degenerate induced magnetosphere is the upstream escape driven by the ambipolar electric field, contributing 42% to the total escape, a channel absent in the nominal case. Additionally, 52% of escape occurs through a cross-flow plume, formed by the drift of ionospheric ions in the weak convective field and IMF. This channel is dominant, exhibiting an intensity seven times greater than that of the plume driven by the convective electric field in the nominal case.

sted, utgiver, år, opplag, sider
American Geophysical Union (AGU), 2025. Vol. 52, nr 12, artikkel-id e2025GL116161
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-234946DOI: 10.1029/2025GL116161ISI: 001511066300001Scopus ID: 2-s2.0-105008866005OAI: oai:DiVA.org:umu-234946DiVA, id: diva2:1934179
Forskningsfinansiär
Swedish National Space Board, 198/19Tilgjengelig fra: 2025-02-03 Laget: 2025-02-03 Sist oppdatert: 2025-07-08bibliografisk kontrollert
Inngår i avhandling
1. Modeling the effects of solar conditions on the interaction of the solar wind with Mars
Åpne denne publikasjonen i ny fane eller vindu >>Modeling the effects of solar conditions on the interaction of the solar wind with Mars
2025 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Alternativ tittel[sv]
Modellering av solens effekt på växelverkan mellan solvinden och Mars
Abstract [en]

As the solar wind reaches Mars, planetary ions mass-load the flow, slowing it down and creating a bow shock upstream of the planet. The convective electric field, coming from the solar wind flow and solar wind magnetic field, results in a potential difference across the conducting ionosphere that in turn results in induction currents flowing through the conductor (unipolar induction). The magnetic fields associated with the induction currents cancel (or reduce due to finite conductivity) the magnetic field inside the ionosphere (Lenz’s law). Above the ionosphere, the induced fields act on the solar wind plasma by deviating it, thus a void called an induced magnetosphere is created. Without a global magnetic field, Mars’ atmosphere is eroded by the solar wind, an ongoing atmospheric escape that has significantly influenced its climatic evolution. For present Mars, the dominant escape of atmospheric neutrals is through four channels: Jeans escape, photochemical reactions, sputtering and electron impact ionization, while ions above the exobase are accelerated by the solar wind convective electric field to escape.

In this study, we introduce a new method for estimating heavy ion (O+, O+2, and CO+2) escape rates from Mars, combining a hybrid plasma model with observational data. We use observed upstream solar wind parameters as input for a hybrid plasma model, where the total ion upflux at the exobase is a free parameter. We then vary this ion upflux to find the best fit to the observed bow shock location. This method gives us a self-consistent description of the Mars-solar wind interaction, which enables broader analyses of the interaction’s properties, beyond just escape.

We investigate the influence of external factors, solar EUV radiation, solar wind dynamic pressure, interplanetary magnetic field (IMF) strength, and IMF cone angle on Martian heavy ion escape. Our results reveal that ion escape increases with stronger EUV radiation and solar wind dynamic pressure, but decreases with a higher IMF strength and cone angle. In an extreme case study when the solar wind flowis nearly aligned with the solar IMF, the induced magnetosphere of Mars degenerates, and the bow shock on the dayside disappears, ions flowing towards the sun are accelerated by the ambipolar field, and a large-scale E×B cross-flow structure forms, dramatically increasing ionescape. We therefore call this type of interaction a degenerate induced magnetosphere. Finally, we compare the interactions of Mars and Venus in response to similar solar wind conditions, finding significant similarities in their responses as unmagnetized planets, further informing our understanding of atmospheric escape and solar wind interactions with unmagnetized bodies. 

sted, utgiver, år, opplag, sider
Umeå University, 2025. s. 67
Serie
IRF Scientific Report, ISSN 0284-1703 ; 319
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-235036 (URN)978-91-8070-590-5 (ISBN)978-91-8070-591-2 (ISBN)
Disputas
2025-03-07, Ljusårssalen, Institutet för Rymdfysik, Bengt Hultqvist väg 1, Kriuna, 09:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2025-02-14 Laget: 2025-02-05 Sist oppdatert: 2025-02-12bibliografisk kontrollert

Open Access i DiVA

fulltext(2324 kB)5 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 2324 kBChecksum SHA-512
166668fb18082f0681fca9b546805cdc42e86042faf09f667a8c9406f09819f85cc6e8bede1b0b82359a73de8db21398afda2db2a604762d4e6e7840004b2271
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Zhang, QiBarabash, StasHolmström, MatsWang, Xiao-DongFutaana, YoshifumiNilsson, Hans

Søk i DiVA

Av forfatter/redaktør
Zhang, QiBarabash, StasHolmström, MatsWang, Xiao-DongFutaana, YoshifumiNilsson, Hans
Av organisasjonen
I samme tidsskrift
Geophysical Research Letters

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 5 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 99 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf