Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Context matters: Understanding socially appropriate affective responses via sentence embeddings
KTH: The Royal Institute of Technology, Stockholm, Sweden.
PAL Robotics, Barcelona, Spain.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0003-2282-9939
KTH: The Royal Institute of Technology, Stockholm, Sweden.
Vise andre og tillknytning
2025 (engelsk)Inngår i: Social Robotics: 16th International Conference, ICSR + AI 2024, Proceedings, Part I / [ed] Oskar Palinko; Leon Bodenhagen; John-John Cabibihan; Kerstin Fischer; Selma Šabanović; Katie Winkle; Laxmidhar Behera · Shuzhi Sam Ge; Dimitrios Chrysostomou; Wanyue Jiang; Hongsheng He, Springer Nature, 2025, s. 78-91Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

As AI systems increasingly engage in social interactions, comprehending human social dynamics is crucial. Affect recognition enables systems to respond appropriately to emotional nuances in social situations. However, existing multimodal approaches lack accounting for the social appropriateness of detected emotions within their contexts. This paper presents a novel methodology leveraging sentence embeddings to distinguish socially appropriate and inappropriate interactions for more context-aware AI systems. Our approach measures the semantic distance between facial expression descriptions and predefined reference points. We evaluate our method using a benchmark dataset and a real-world robot deployment in a library, combining GPT-4(V) for expression descriptions and ada-2 for sentence embeddings to detect socially inappropriate interactions. Our results underscore the importance of considering contextual factors for effective social interaction understanding through context-aware affect recognition, contributing to the development of socially intelligent AI capable of interpreting and responding to human affect appropriately.

sted, utgiver, år, opplag, sider
Springer Nature, 2025. s. 78-91
Serie
International Conference on Social Robotics, ISSN 03029743, E-ISSN 16113349
Emneord [en]
embeddings, human-robot interaction, machine learning, Social representation
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-238444DOI: 10.1007/978-981-96-3522-1_9Scopus ID: 2-s2.0-105002016733ISBN: 9789819635214 (tryckt)OAI: oai:DiVA.org:umu-238444DiVA, id: diva2:1957439
Konferanse
ICSR’24: 16th International Conference on Social Robotics +AI, Odense, Denmark, October 23-26, 2024
Merknad

Part of the book series: Lecture Notes in Computer Science (LNCS, volume 15561)

Tilgjengelig fra: 2025-05-09 Laget: 2025-05-09 Sist oppdatert: 2025-05-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Güneysu Özgür, Arzu

Søk i DiVA

Av forfatter/redaktør
Güneysu Özgür, Arzu
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 18 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf